A Bit of History
I started working on UML in earnest in February 1999 after having the idea that porting Linux to itself might be practical. I tossed the idea around in the back of my head for a few months in late 1998 and early 1999. I was thinking about what facilities it would need from the host and whether the system call interface provided by Linux was rich enough to provide those facilities. Ultimately, I decided it probably was, and in the cases where I wasn't sure, I could think of workarounds.
So, around February, I pulled a copy of the 2.0.32 kernel tree off of a Linux CD (probably a Red Hat source CD) because it was too painful to try to download it through my dialup. Within the resulting kernel tree, I created the directories my new port was going to need without putting any files in them. This is the absolute minimum amount of infrastructure you need for a new port. With the directories present, the kernel build process can descend into them and try to build what's there.
Needless to say, with nothing in those directories, the build didn't even start to work. I needed to add the necessary build infrastructure, such as Makefiles. So, I added the minimal set of things needed to get the kernel build to continue and looked at what failed next. Missing were a number of header files used by the generic (hardware-independent) portions of the kernel that the port needs to provide. I created them as empty files, so that the #include preprocessor directives would at least succeed, and proceeded onward.
At this point, the kernel build started complaining about missing macros, variables, and functions—the things that should have been present in my empty header files and nonexistent C source files. This told me what I needed to think about implementing. I did so in the same way as before: For the most part, I implemented the functions as stubs that didn't do anything except print an error message. I also started adding real headers, mostly by copying the x86 headers into my include directory and removing the things that had no chance of compiling.
After defining many of these useless procedures, I got the UML build to "succeed." It succeeded in the sense that it produced a program I could run. However, running it caused immediate failures due to the large number of procedures I defined that didn't do what they were supposed to—they did nothing at all except print errors. The utility of these errors is that they told me in what order I had to implement these things for real.
So, for the most part, I plodded along, implementing whatever function printed its name first, making small increments of progress through the boot process with each addition. In some cases, I needed to implement a subsystem, resulting in a related set of functions.
Implementation continued in this vein for a few months, interrupted by about a month of real, paying work. In early June, I got UML to boot a small filesystem up to a login prompt, at which point I could log in and run commands. This may sound impressive, but UML was still bug-ridden and full of design mistakes. These would be rooted out later, but at the time, UML was not much more than a proof of concept.
Because of design decisions made earlier, such fundamental things as shared libraries and the ability to log in on the main console didn't work. I worked around the first problem by compiling a minimal set of tools statically, so they didn't need shared libraries. This minimal set of tools was what I populated my first UML filesystem with. At the time of my announcement, I made this filesystem available for download since it was the only way anyone else was going to get UML to boot.
Because of another design decision, UML, in effect, put itself in the background, making it impossible for it to accept input from the terminal. This became a problem when you tried to log in. I worked around this by writing what amounted to a serial line driver, allowing me to attach to a virtual serial line on which I could log in.
These are two of the most glaring examples of what didn't work at that point. The full list was much longer and included other things such as signal delivery and process preemption. They didn't prevent UML from working convincingly, even though they were fairly fundamental problems, and they would get fixed later.
At the time, Linus was just starting the 2.3 development kernel series. My first "UML-ized" kernel was 2.0.32, which, even at the time, was fairly old. So, I bit the bullet and downloaded a "modern" kernel, which was 2.3.5 or so. This started the process, which continues to this day, of keeping in close touch with the current development kernels (and as of 2.4.0, the stable ones as well).
Development continued, with bugs being fixed, design mistakes rectified (and large pieces of code rewritten from scratch), and drivers and filesystems added. UML spent a longer than usual amount of time being developed out of pool, that is, not integrated into the mainline Linus' kernel tree. In part, this was due to laziness. I was comfortable with the development methodology I had fallen into and didn't see much point in changing it.
However, pressure mounted from various sources to get UML into the main kernel tree. Many people wanted to be able to build UML from the kernel tree they downloaded from http://www.kernel.org. or got with their distribution. Others, wanting the best for the UML project, saw inclusion in Linus' kernel as being a way of getting some public recognition or as a stamp of approval from Linus, thus attracting more users to UML. More pragmatically, some people, who were largely developers, noted that inclusion in the official kernel would cause updates and bug fixes to happen in UML "automatically." This would happen as someone made a pass over the kernel sources, for example, to change an interface or fix a family of bugs, and would cover UML as part of that pass. This would save me the effort of looking through the patch representing a new kernel release, finding those changes, figuring out the equivalent changes needed in UML, and making them. This had become my habit over the roughly four years of UML development before it was merged by Linus. It had become a routine part of UML development, so I didn't begrudge the time it took, but there is no denying that it did take time that would have been better spent on other things.
So, roughly in the spring of 2002, I started sending updated UML patches to Linus, requesting that they be merged. These were ignored for some months, and I was starting to feel a bit discouraged, when out of the blue, he merged my 2.5.34 patch on September 12, 2002. I had sent the patch earlier to Linus as well as the kernel mailing list and one of my own UML lists, as usual, and had not thought about it further. That day, I was idling on an Internet Relay Chat (IRC) channel where a good number of the kernel developers hang around and talk. Suddenly, Arnaldo Carvalho de Melo (a kernel contributor from Brazil and the CTO of Conectiva, the largest Linux distribution in South America) noticed that Linus had merged my patch into his tree.
The response to this from the other kernel hackers, and a little later, from the UML community and wider Linux community, was gratifying positive. A surprisingly (to me) large number of people were genuinely happy that UML had been merged, and, in doing so, got the recognition they thought it deserved.
At this writing, it is three years later, and UML is still under very active development. There have been ups and downs. Some months after UML was merged, I started finding it hard to get Linus to accept updated patches. After a number of ignored patches, I started maintaining UML out of tree again, with the effect that the in-tree version of UML started to bit-rot. It stopped compiling because no one was keeping it up to date with changes to internal kernel interfaces, and of course bugs stopped being fixed because my fixes weren't being merged by Linus.
Late in 2004, an energetic young Italian hacker named Paolo Giarrusso got Andrew Morton, Linus' second-in-command, to include UML in his tree. The so-called "-mm" tree is a sort of purgatory for kernel patches. Andrew merges patches that may or may not be suitable for Linus' kernel in order to give them some wider exposure and see if they are suitable. Andrew took patches representing the current UML at the time from Paolo, and I followed that up with some more patches. Presently, Andrew forwarded those patches, along with many others, to Linus, who included them in his tree. All of a sudden, UML was up to date in the official kernel tree, and I had a reliable conduit for UML updates.
I fed a steady stream of patches through this conduit, and by the time of the 2.6.9 release, you could build a working UML from the official tree, and it was reasonably up to date.
Throughout this period, I had been working on UML on a volunteer basis. I took enough contracting work to keep the bills paid and the cats fed. Primarily, this was spending a day a week at the Institute for Security Technology Studies at Dartmouth College, in northern New Hampshire, about an hour from my house. This changed around May and June of 2004, when, nearly simultaneously, I got job offers from Red Hat and Intel. Both were very generous, offering to have me spend my time on UML, with no requirements to move. I ultimately accepted Intel's offer and have been an Intel employee in the Linux OS group since.
Coincidentally, the job offers came on the fifth anniversary of UML's first public announcement. So, in five years, UML went from nothing to a fully supported part of the official Linux kernel.