Home > Articles

This chapter is from the book

Linux Kernel Architecture

Let’s begin this section by discussing the architecture of the Linux kernel, including responsibilities of the kernel, its organization and modules, services of the kernel, and process management.

Kernel Responsibilities

The kernel (also called the operating system) has two major responsibilities:

  • To interact with and control the system’s hardware components

  • To provide an environment in which applications can run

Some operating systems allow applications to directly access hardware components, although this capability is very uncommon nowadays. UNIX-like operating systems hide all the low-level hardware details from an application. If an application wants to make use of a hardware resource, it must make a request to the operating system. The operating system then evaluates the request and interacts with the hardware component on behalf of the application, but only if it’s valid. To enforce this kind of scheme, the operating system needs to depend on hardware capabilities that forbid applications to directly interact with them.

Organization and Modules

Like many other UNIX-like operating systems, the Linux kernel is monolithic. This means that even though Linux is divided into subsystems that control various components of the system (such as memory management and process management), all of these subsystems are tightly integrated to form the whole kernel. In contrast, microkernel operating systems provide bare, minimal functionality, and all other operating system layers are performed on top of microkernels as processes. Microkernel operating systems are generally slower due to message passing between the various layers. However, microkernel operating systems can be extended very easily.

Linux kernels can be extended by modules. A module is a kernel feature that provides the benefits of a microkernel without a penalty. A module is an object that can be linked to the kernel at runtime.

Using Kernel Services

The kernel provides a set of interfaces for applications running in user mode to interact with the system. These interfaces, also known as system calls, give applications access to hardware and other kernel resources. System calls not only provide applications with abstracted hardware, but also ensure security and stability.

Most applications do not use system calls directly. Instead, they are programmed to an application programming interface (API). It is important to note that there is no relation between the API and system calls. APIs are provided as part of libraries for applications to make use of. These APIs are generally implemented through the use of one or more system calls.

/proc File System—External Performance View

The /proc file system provides the user with a view of internal kernel data structures. It also lets you look at and change some of the kernel internal data structures, thereby changing the kernal’s behavior. The /proc file system provides an easy way to fine-tune system resources to improve the performance not only of applications but of the overall system.

/proc is a virtual file system that is created dynamically by the kernel to provide data. It is organized into various directories. Each of these directories corresponds to tunables for a given subsystem. Appendix A explains in detail how to use the /proc file system to fine-tune your system.

Another essential of the Linux system is memory management. In the next section, we’ll cover five aspects of how Linux handles this management.

Memory Management

The various aspects of memory management in Linux include address space, physical memory, memory mapping, paging, and swapping.

Address Space

One of the advantages of virtual memory is that each process thinks it has all the address space it needs. The virtual memory can be many times larger than the physical memory in the system. Each process in the system has its own virtual address space. These virtual address spaces are completely separate from each other. A process running one application cannot affect another, and the applications are protected from each other. The virtual address space is mapped to physical memory by the operating system. From an application point of view, this address space is a flat linear address space. The kernel, however, treats the user virtual address space very differently.

The linear address space is divided into two parts: user address space and kernel address space. The user address space cannot change every time a context switch occurs and the kernel address space remains constant. How much space is allocated for user space and kernel space depends mainly on whether the system is a 32-bit or 64-bit architecture. For example, x86 is a 32-bit architecture and supports only a 4GB address space. Out of this 4GB, 3GB is reserved for user space and 1GB is reserved for the kernel. The location of the split is determined by the PAGE_OFFSET kernel configuration variable.

Physical Memory

Linux uses an architecture-independent way of describing physical memory in order to support various architectures.

Physical memory can be arranged into banks, with each bank being a particular distance from the processor. This type of memory arrangement is becoming very common, with more machines employing NUMA (Nonuniform Memory Access) technology. Linux VM represents this arrangement as a node. Each node is divided into a number of blocks called zones that represent ranges within memory. There are three different zones: ZONE_DMA, ZONE_NORMAL, and ZONE_HIGHMEM. For example, x86 has the following zones:

    ZONE_ DMA            First 16MB of memory

    ZONE_ NORMAL     16MB – 896MB

    ZONE_ HIGHMEM    896MB – end

Each zone has its own use. Some of the legacy ISA devices have restrictions on where they can perform I/O from and to. ZONE_DMA addresses those requirements.

ZONE_NORMAL is used for all kernel operations and allocations. It is extremely crucial for system performance.

ZONE_ HIGHMEM is the rest of the memory in the system. It’s important to note that ZONE_HIGHMEM cannot be used for kernel allocations and data structures—it can only be used for user data.

Memory Mapping

While looking at how kernel memory is mapped, we will use x86 as an example for better understanding. As mentioned earlier, the kernel has only 1GB of virtual address space for its use. The other 3GB is reserved for the kernel. The kernel maps the physical memory in ZONE_DMA and ZONE_NORMAL directly to its address space. This means that the first 896MB of physical memory in the system is mapped to the kernel’s virtual address space, which leaves only 128MB of virtual address space. This 128MB of virtual space is used for operations such as vmalloc and kmap.

This mapping scheme works well as long as physical memory sizes are small (less than 1GB). However, these days, all servers support tens of gigabytes of memory. Intel has added PAE (Physical Address Extension) to its Pentium processors to support up to 64GB of physical memory. Because of the preceding memory mapping, handling physical memories in tens of gigabytes is a major source of problems for x86 Linux. The Linux kernel handles high memory (all memory about 896MB) as follows: When the Linux kernel needs to address a page in high memory, it maps that page into a small virtual address space (kmap) window, operates on that page, and unmaps the page. The 64-bit architectures do not have this problem because their address space is huge.

Paging

Virtual memory is implemented in many ways, but the most effective way is hardware-based. Virtual address space is divided into fixed-size chunks called pages. Virtual memory references are translated into addresses in physical memory using page tables. To support various architectures and page sizes, Linux uses a three-level paging mechanism. The three types of page tables are as follows:

  • Page Global Directory (PGD)

  • Page Middle Directory (PMD)

  • Page Table (PTE)

Address translation provides a way to separate the virtual address space of a process from the physical address space. Each page of virtual memory can be marked "present" or "not present" in the main memory. If a process references an address in virtual memory that is not present, hardware generates a page fault, which is handled by the kernel. The kernel handles the fault and brings the page into main memory. In this process, the system might have to replace an existing page to make room for the new one.

The replacement policy is one of the most critical aspects of the paging system. Linux 2.6 fixed various problems surrounding the page selection and replacement that were present in previous versions of Linux.

Swapping

Swapping is the moving of an entire process to and from secondary storage when the main memory is low. Many modern operating systems, including Linux, do not use this approach, mainly because context switches are very expensive. Instead, they use paging. In Linux, swapping is performed at the page level rather than at the process level. The main advantage of swapping is that it expands the process address space that is usable by a process. As the kernel needs to free up memory to make room for new pages, it may need to discard some of the less frequently used or unused pages. Some of the pages cannot be freed up easily because they are not backed by disks. Instead, they have to be copied to a backing store (swap area) and need to be read back from the backing store when needed. One major disadvantage of swapping is speed. Generally, disks are very slow, so swapping should be eliminated whenever possible.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020