Home > Articles > Programming > General Programming/Other Languages

This chapter is from the book

This chapter is from the book

4.2 CHOOSING AN ALGORITHM STRUCTURE PATTERN

Finding an effective Algorithm Structure pattern for a given problem can be accomplished by considering the questions in the following sections.

4.2.1 Target Platform

What constraints are placed on the parallel algorithm by the target machine or programming environment?

In an ideal world, it would not be necessary to consider the details of the target platform at this stage of the design, because doing so works against keeping the program portable and scalable. This is not an ideal world, however, and software designed without considering the major features of the target platform is unlikely to run efficiently.

The primary issue is how many units of execution (UEs) the system will effectively support, because an algorithm that works well for ten UEs may not work well for hundreds of UEs. It is not necessary to decide on a specific number (in fact to do so would overly constrain the applicability of the design), but it is important to have in mind at this point an order of magnitude for the number of UEs.

Another issue is how expensive it is to share information among UEs. If there is hardware support for shared memory, information exchange takes place through shared access to common memory, and frequent data sharing makes sense. If the target is a collection of nodes connected by a slow network, however, the communication required to share information is very expensive and must be avoided wherever possible.

When thinking about both of these issues—the number of UEs and the cost of sharing information—avoid the tendency to over-constrain the design. Software typically outlives hardware, so over the course of a program's life it may be used on a tremendous range of target platforms. The goal is to obtain a design that works well on the original target platform, but at the same time is flexible enough to adapt to different classes of hardware.

Finally, in addition to multiple UEs and some way to share information among them, a parallel computer has one or more programming environments that can be used to implement parallel algorithms. Different programming environments provide different ways to create tasks and share information among UEs, and a design that does not map well onto the characteristics of the target programming environment will be difficult to implement.

4.2.2 Major Organizing Principle

When considering the concurrency in the problem, is there a particular way of looking at it that stands out and provides a high-level mechanism for organizing this concurrency?

The analysis carried out using the patterns of the Finding Concurrency design space describes the potential concurrency in terms of tasks and groups of tasks, data (both shared and task-local), and ordering constraints among task groups. The next step is to find an algorithm structure that represents how this concurrency maps onto the UEs. There is usually a major organizing principle implied by the concurrency. This usually falls into one of three camps: organization by tasks, organization by data decomposition, and organization by flow of data. We now consider each of these in more detail.

For some problems, there is really only one group of tasks active at one time, and the way the tasks within this group interact is the major feature of the concurrency. Examples include so-called embarrassingly parallel programs in which the tasks are completely independent, as well as programs in which the tasks in a single group cooperate to compute a result.

For other problems, the way data is decomposed and shared among tasks stands out as the major way to organize the concurrency. For example, many problems focus on the update of a few large data structures, and the most productive way to think about the concurrency is in terms of how this structure is decomposed and distributed among UEs. Programs to solve differential equations or carry out linear algebra computations often fall into this category because they are frequently based on updating large data structures.

Finally, for some problems, the major feature of the concurrency is the presence of well-defined interacting groups of tasks, and the key issue is how the data flows among the tasks. For example, in a signal-processing application, data may flow through a sequence of tasks organized as a pipeline, each performing a transformation on successive data elements. Or a discrete-event simulation might be parallelized by decomposing it into a tasks interacting via "events". Here, the major feature of the concurrency is the way in which these distinct task groups interact.

Notice also that the most effective parallel algorithm design might make use of multiple algorithm structures (combined hierarchically, compositionally, or in sequence), and this is the point at which to consider whether such a design makes sense. For example, it often happens that the very top level of the design is a sequential composition of one or more Algorithm Structure patterns. Other designs might be organized hierarchically, with one pattern used to organize the interaction of the major task groups and other patterns used to organize tasks within the groups—for example, an instance of the Pipeline pattern in which individual stages are instances of the Task Parallelism pattern.

4.2.3 The Algorithm Structure Decision Tree

For each subset of tasks, which Algorithm Structure design pattern most effectively defines how to map the tasks onto UEs?

Having considered the questions raised in the preceding sections, we are now ready to select an algorithm structure, guided by an understanding of constraints imposed by the target platform, an appreciation of the role of hierarchy and composition, and a major organizing principle for the problem. The decision is guided by the decision tree shown in Fig. 4.2. Starting at the top of the tree, consider the concurrency and the major organizing principle, and use this information to select one of the three branches of the tree; then follow the upcoming discussion for the appropriate subtree. Notice again that for some problems, the final design might combine more than one algorithm structure: If no single structure seems suitable, it might be necessary to divide the tasks making up the problem into two or more groups, work through this procedure separately for each group, and then determine how to combine the resulting algorithm structures.

04fig02.gifFigure 4.2 Decision tree for the Algorithm Structure design space

Organize By Tasks

Select the Organize By Tasks branch when the execution of the tasks themselves is the best organizing principle. Then determine how the tasks are enumerated. If they can be gathered into a set linear in any number of dimensions, choose the Task Parallelism pattern. This pattern includes both situations in which the tasks are independent of each other (so-called embarrassingly parallel algorithms) and situations in which there are some dependencies among the tasks in the form of access to shared data or a need to exchange messages. If the tasks are enumerated by a recursive procedure, choose the Divide and Conquer pattern. In this pattern, the problem is solved by recursively dividing it into subproblems, solving each subproblem independently, and then recombining the subsolutions into a solution to the original problem.

Organize By Data Decomposition

Select the Organize By Data Decomposition branch when the decomposition of the data is the major organizing principle in understanding the concurrency. There are two patterns in this group, differing in how the decomposition is structured—linearly in each dimension or recursively. Choose the Geometric Decomposition pattern when the problem space is decomposed into discrete subspaces and the problem is solved by computing solutions for the subspaces, with the solution for each subspace typically requiring data from a small number of other subspaces. Many instances of this pattern can be found in scientific computing, where it is useful in parallelizing grid-based computations, for example. Choose the Recursive Data pattern when the problem is defined in terms of following links through a recursive data structure (for example, a binary tree).

Organize By Flow of Data

Select the Organize By Flow of Data branch when the major organizing principle is how the flow of data imposes an ordering on the groups of tasks. This pattern group has two members, one that applies when this ordering is regular and static and one that applies when it is irregular and/or dynamic. Choose the Pipeline pattern when the flow of data among task groups is regular, one-way, and does not change during the algorithm (that is, the task groups can be arranged into a pipeline through which the data flows). Choose the Event-Based Coordination pattern when the flow of data is irregular, dynamic, and/or unpredictable (that is, when the task groups can be thought of as interacting via asynchronous events).

4.2.4 Re-evaluation

Is the Algorithm Structure pattern (or patterns) suitable for the target platform? It is important to frequently review decisions made so far to be sure the chosen pattern(s) are a good fit with the target platform.

After choosing one or more Algorithm Structure patterns to be used in the design, skim through their descriptions to be sure they are reasonably suitable for the target platform. (For example, if the target platform consists of a large number of workstations connected by a slow network, and one of the chosen Algorithm Structure patterns requires frequent communication among tasks, it might be difficult to implement the design efficiently.) If the chosen patterns seem wildly unsuitable for the target platform, try identifying a secondary organizing principle and working through the preceding step again.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020