Home > Articles > Security > Network Security

Like this article? We recommend

Like this article? We recommend

Designing a Virus Vaccine

This article demonstrates methods to design and test a live, attenuated computer virus vaccine using real-world simulation. The following list summarizes the design goals of our vaccine:

  • Confers immunity. Like the biological smallpox vaccine, the computer vaccine should confer lasting immunity against infection. An example of conferring immunity would be a virus that automatically repairs vulnerable systems with a software security patch.

  • Conserves resources. A vaccine should consume fewer network resources than the virus against which it provides immunity. One method to achieve this goal is to "attenuate" the vaccine, similar to the attenuation of biological vaccines. For example, a computer vaccine could be written to spread more slowly (that is, with less "virulence") than its pathogenic counterpart (such as Code Red). As I'll demonstrate, this scheme can effectively prevent future infections with related strains, while minimizing the strain on network communication.

  • Easily distributed. The vaccine should be easily distributable to more than 90% of the target population. This arbitrary target percentage approximates ideal goals for biological vaccine counterparts such as the influenza vaccine.

  • Low morbidity. The vaccine should have a low incidence of side effects. In other words, it should not routinely damage systems. Quality-control mechanisms can help here. Examples of quality control include maintaining a transparent, open source development of the vaccine. In addition, the vaccine should be developed under the supervision of an international monitoring body, similar to the World Health Organization for biological vaccines. It was only though international coordination by a world health body that the scourge of smallpox was eradicated.

  • Cost efficient. The cost of the vaccine should be low, and it should reduce the overall cost of damage that would otherwise be caused by the virus against which it protects. For an expensive virus such as Code Red, even a modest overall reduction of 10% in damage from the virus would provide a net savings of $250 million worldwide.

The major objection to releasing a live, replicating vaccine on the Internet—even under the aegis of a world governance body—is that the vaccine alters target host machines without permission of the owner. Thus, the vaccine can (and will) cause damage to a certain number of critical systems. However, this objection is overcome by comparison to biological vaccines. For example, with the measles vaccine, a small percentage of children who receive it are injured or die due to side effects. Despite these risks, however, parents line up each year to have their children receive this attenuated form of the deadly virus. In fact, the United States government mandates that all children must receive the measles vaccine. Thus, although mandatory biological vaccination results in a small percentage of death and disease, it has resulted in an overall net benefit of saving millions of lives.

Given the billions of dollars of damage caused by computer viruses each year, a computer virus vaccine could be designed with the same benefit-to-risk ratio as that of biological vaccines. As stated above, the Code Red virus caused approximately $2.5 billion in damage. However, Code Red actually came in three discrete variants, which were released over time. All three versions exploited the same vulnerability discovered in Microsoft's IIS web server software on June 18, 2001. [28] However, the first version of Code Red was not seen in the wild until more than three weeks later, on July 12, 2001. This version infected at least 359,104 machines within 14 hours. Following the first outbreak, the second, more virulent version of Code Red didn't appear for another week. Finally, it took another two weeks for the third and final form to appear in the wild. [29]

Thus, there was a considerable amount of time for a vaccine to be developed and deployed between these individual versions of Code Red. For example, suppose a vaccine was developed and released in the interim between the first and second versions of Code Red; at that stage, a vaccine might have improved global immunity and reduced the remainder of the $2.5 billion in damage.

This article examines the theory that a live, attenuated vaccine released in the interim between the variants of Code Red would improve outcomes. It also tests the case of releasing the vaccine in the three-week interim after the first vulnerability was first discovered, but before the first virus was released in the wild.

Several models have been used to simulate the spread of viruses. [30, 31] However, optimal testing of a live vaccine requires a simulator that most closely models the real-world behavior of viruses. NWS, a "network worm simulation system" [32] is a framework of objects and methods written in the PERL programming language that allows programmers to design and test live, self-replicating pathogens. NWS provides the advantage of modeling viral behavior by executing actual virus code. Thus, the simulation allows viruses to perform arbitrary actions, which may model real-world behavior more accurately than rigid mathematical simulation. NWS is open source and is available under the GNU General Public License (GPL).

In the following simulations, NWS is initialized with a sample address space arbitrarily chosen at 65535, which represents the entire network. This simulated network is then populated with 10,000 vulnerable hosts. These hosts represent the number of vulnerable systems that are initially present in the address space. This simulation is analogous to an Internet populated with Microsoft IIS web servers that are vulnerable to the Code Red virus.

NWS measures the passage of time in the simulated network based on discrete time steps. At each time step, an object may perform an action such as a virus probing or infecting a host. In the current simulations, the address space is populated with an initial number of seven (7) Code Red and seven (7) vaccine instances, respectively. In each run, the results are recorded for a total of 150 discrete time steps. Each simulation is run through 20 iterations on a Pentium IV machine running Linux, and the results of the 20 iterations are averaged and plotted.

One of the most devastating impacts of modern viruses is their negative effect on overall network performance. For example, the rapid spread of the Slammer infection in 2003 knocked most of South Korea's Internet offline for several hours. [33] Thus, an important goal is to design the vaccine to have minimal impact on network bandwidth. In NWS, network messages are counted at each time step. For the purpose of this simulation, each instance of Code Red sends out two message probes to a random address during each time step. Vaccines are attenuated to send out fewer probes per time step than Code Red. The number of messages passed per time in the network is recorded as a measure of bandwidth consumption.

In biology, many vaccines use live, attenuated strains of the virus to fight the virus itself. Thus, the current vaccine is based on Code Red itself. However, it has been modified in two ways. After attaching to a vulnerable host, the vaccine "patches" the vulnerability, thus marking the host as resistant to further infection. In addition, in this study the vaccine is attenuated. Thus, the vaccine is not as virulent as Code Red—it doesn't send as many probes per time step. For example, if a variant of Code Red sends out two random probes per time step, a vaccine can be attenuated to send only one probe per time step (a 50% attenuation in virulence). As in biology, the advantage of weakening the virus vaccine is that it should then spread with less damage (for example, with less consumption of network resources) than the more virulent strains of the real virus.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020