Home > Articles > Certification > CompTIA

This chapter is from the book

This chapter is from the book

Switches

On the surface, a switch looks much like a hub, although the price tag might be a giveaway—switches are considerably more expensive than hubs. The main reason for the price disparity is that switches can do much more and offer many more advantages than hubs. Figure 3.4 shows an example of a 32-port Ethernet switch. If you refer to Figure 3.2, you'll notice few differences in the appearance of the high-density hub and this switch.

Figure 3.4 A 32-port Ethernet switch. (Photo courtesy TRENDware International, http://www.trendware.com.)

As with a hub, computers connect to a switch via a length of twisted-pair cable. Multiple switches can be used, like hubs, to create larger networks. Despite their similarity in appearance and their identical physical connections to computers, switches offer significant operational advantages over hubs.

As discussed earlier in the chapter, on a hub, data is forwarded to all ports, regardless of whether the data is intended for the system connected to the port. This arrangement is very inefficient; however, it requires very little intelligence on the part of the hub, which is why hubs are inexpensive.

Rather than forwarding data to all the connected ports, a switch forwards data only to the port on which the destination system is connected. It looks at the Media Access Control (MAC) addresses of the devices connected to it to determine the correct port. A MAC address is a unique number that is programmed into every NIC. By forwarding data only to the system to which the data is addressed, the switch decreases the amount of traffic on each network link dramatically. In effect, the switch literally channels (or switches, if you prefer) data between the ports. Figure 3.5 illustrates how a switch works.

Figure 3.5 How a switch works.

You might recall from our the discussions of Ethernet networking in Chapter 2, "Cabling and Connectors," that collisions occur on the network when two devices attempt to transmit at the same time. Such collisions cause the performance of the network to degrade. By channeling data only to the connections that should receive it, switches reduce the number of collisions that occur on the network. As a result, switches provide significant performance improvements over hubs.

Switches can also further improve performance over the performance of hubs by using a mechanism called full-duplex. On a standard network connection, the communication between the system and the switch or hub is said to be half-duplex. In a half-duplex connection, data can be either sent or received on the wire, but not at the same time. Because switches manage the data flow on the connection, a switch can operate in full-duplex mode—it can send and receive data on the connection at the same time. In a full-duplex connection, the maximum bandwidth is double that for a half-duplex connection—for example, 10Mbps becomes 20Mbps and 100Mbps becomes 200Mbps. As you can imagine, the difference in performance between a 100Mbps network connection and a 200Mbps connection is considerable.

The secret of full-duplex lies in the switch. As discussed previously in this section, switches can isolate each port and effectively create a single segment for each port on the switch. Because there are only two devices on each segment (the system and the switch), and because the switch is calling the shots, there are no collisions. No collisions means no need to detect collisions—thus, a collision-detection system is not needed with switches. The switch drops the conventional carrier-sense multiple-access with collision detection (CSMA/CD) media access method and adopts a far more selfish (and therefore efficient) communication method.

To use a full-duplex connection, you basically need three things: a switch, the appropriate cable, and an NIC (and driver) that supports full-duplex communication. Given these requirements, and the fact that most modern NICs are full-duplex-ready, you might think everyone would be using full-duplex connections. However, the reality is a little different. In some cases, the NIC is simply not configured to make use of the driver. For example, NetWare 4 required that a parameter be passed when the driver was loaded to take advantage of a full-duplex connection.

Half-Duplex

It's important to remember that a full-duplex connection has a maximum data rate of double the standard speed, and a half-duplex connection is the standard speed. The term half-duplex can sometimes lead people to believe that the connection speed is half of the standard, which is not the case. A simple way to remember this is to think of the half-duplex figure as half the full-duplex figure, not half the standard figure.

Microsegmentation

The process that switches perform is referred to as microsegmentation.

All Switches Are Not Created Equal

Having learned the advantages of using a switch and looked at the speeds associated with the network connections on the switch, you could assume that one switch is just as good as another. This is not the case. Switches are rated by the number of packets per second (pps) they can handle. Good-quality, high-end switches can accommodate 90 million pps and higher. When you're buying network switches, be sure to look at the pps figures before making a decision.

Troubleshooting Network Connection Speed

Most NICs can automatically detect the speed of the network connection they are connected to. However, although the detection process is normally reliable, on some occasions it may not work correctly. If you are troubleshooting a network connection and the autodetect feature is turned on, try setting the speed manually (preferably to a low speed) and then give it another go. If you are using a managed switch, which is discussed later in this chapter, you might have to do the same thing at the switch end of the connection.

Switching Methods

Switches use three methods to deal with data as it arrives:

  • Cut-through—In a cut-through configuration, the switch begins to forward the packet as soon as it is received. No error checking is performed on the packet, so the packet is moved through very quickly. The downside of cut-through is that because the integrity of the packet is not checked, the switch can propagate errors.

  • Store-and-forward—In a store-and-forward configuration, the switch waits to receive the entire packet before beginning to forward it. It also performs basic error checking.

  • Fragment-free—Building on the speed advantages of cut-through switching, fragment-free switching works by reading only the part of the packet that enables it to identify fragments of a transmission.

As you might expect, the store-and-forward process takes longer than the cut-through method, but it is more reliable. In addition, the delay caused by store-and-forward switching increases with the packet size. The delay caused by cut-through switching is always the same—only the address portion of the packet is read, and this is always the same size, regardless of the size of the data packet. The difference in delay between the two protocols is very high. On average, cut-through switching is 30 times faster than store-and-forward switching.

Latency

The time it takes for data to travel between two locations is known as the latency. The higher the latency, the bigger the delay in sending the data.

It might seem that cut-through switching is the obvious choice, but today's switches are fast enough to be able to use store-and-forward switching and still deliver high performance levels. On some managed switches, you can select the switching method you want to use.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020