- The Emergence of Web Applications
- Basic Definitions
- The Nature of the Web and Its Challenges
- Performance and Scalability
- Performance
- Scalability
- The Internet Medium
- Wide Audience
- Interactive
- Dynamic
- Always On
- Integrated
- Lack of Complete Control
- Measuring Performance and Scalability
- Measuring Performance
- Beyond Benchmarking
- Measuring Scalability
- Throughput and Price/Performance
- Scalability and Performance Hints
- Think End-to-End
- Scalability Doesn't Equal Performance
- Summary
Lack of Complete Control
To a provider of information, one of the most frustrating aspects about the Web is the fact that, no matter how much money is thrown at improving application scalability, it does not mean that the application will become scalable. The culprit here is the Internet itself. While its topology of interconnected networks enables information to be delivered from anywhere to anywhere, it delivers very few quality of service (QoS) guarantees. No matter how much time you spend tuning the client and server sides of a Web application, no authority is going to ensure that data will travel from your server to your clients at quality or priority any better than that of a student downloading MP3 files all night. And despite your best efforts, an important client that relies on a sketchy ISP with intermittent outages may deem your application slow or unreliable, though no fault of your own.
In short, the problem is decentralization. For critical Web applications, designers want complete control of the problem, but the reality is that they can almost never have it unless they circumvent the Web. This is another reminder that the solution to scalable Web applications consists of more than writing speedy server-side code. Sure, that can help, but it is by no means the whole picture.
When we talk about the lack of control over the network, we are more precisely referring to the inability to reserve bandwidth and the lack of knowledge or control over the networking elements that make up the path from client to server. Without being able to reserve bandwidth between a server and all its clients, we cannot schedule a big event that will bring in many HTTP requests and be guaranteed that they can get through. Although we can do much to widen the path in certain areas (from the server side to the ISP), we cannot widen it everywhere.
In terms of lack of knowledge about networking elements, we have to consider how clients reach servers. On the Internet, the mechanism for reaching a server from a client involves querying a series of routing tables. Without access or control over those tables, there is no way that designers can ensure high quality of service.
Techniques like Web caching and content distribution allow us to influence QoS somewhat, but they don't provide guarantees. As it turns out, the lack of control over the underlying network represents the biggest question mark in terms of consistent application performance. We simply cannot understand or address the inefficiencies of every path by which a client connects to our application. The best we can do is design and deploy for efficiency and limit our use of the network, and thus limit performance variability, when possible.