Home > Articles > Certification > Cisco Certification > CCIE

Introduction to Cisco Network Design

This chapter from Cisco Press provides an overview of the technologies available today to design networks. Discussions are divided into designing campus networks, designing WANs, utilizing remote connection design, providing integrated solutions, and determining networking requirements.
This chapter is from the book

Networking—the communication between two or more networks—encompasses every aspect of connecting computers together. Networks have grown to support vastly disparate end-system communication requirements. A network requires many protocols and features to permit scalability and manageability without constant manual intervention. Large networks can consist of the following three distinct components:

  • Campus networks, which consist of locally connected users in a building or group of buildings

  • Wide-area networks (WANs), which connect campuses

  • Remote connections, which link branch offices and single users (mobile users and telecommuters) to a local campus or the Internet

Figure 1-1 provides an example of a typical enterprise network.

Figure 1-1 Example of a Typical Enterprise Network

Designing a network can be a challenging task. To design reliable, scalable networks, network designers must realize that each of the three major components of a network has distinct design requirements. A network that consists of only 50 meshed routing nodes can pose complex problems that lead to unpredictable results. Attempting to optimize networks that feature thousands of nodes can pose even more complex problems.

Despite improvements in equipment performance and media capabilities, network design is becoming more difficult. The trend is toward increasingly complex environments involving multiple media, multiple protocols, and interconnection to networks outside any single organization's dominion of control. Carefully designing networks can reduce the hardships associated with growth as a networking environment evolves.

This chapter provides an overview of the technologies available today to design networks. Discussions are divided into the following general topics:

  • Designing campus networks

  • Designing WANs

  • Utilizing remote connection design

  • Providing integrated solutions

  • Determining your networking requirements

Designing Campus Networks

A campus network is a building or group of buildings all connected into one enterprise network that consists of many local-area networks (LANs). A campus is generally a portion of a company (or the whole company) that is constrained to a fixed geographic area, as shown in Figure 1-2.

The distinct characteristic of a campus environment is that the company that owns the campus network usually owns the physical wires deployed in the campus. The campus network topology is primarily LAN technology connecting all the end systems within the building. Campus networks generally use LAN technologies, such as Ethernet, Token Ring, Fiber Distributed Data Interface (FDDI), Fast Ethernet, Gigabit Ethernet, and Asynchronous Transfer Mode (ATM).

Figure 1-2 Example of a Campus Network

A large campus with groups of buildings can also use WAN technology to connect the buildings. Although the wiring and protocols of a campus might be based on WAN technology, they do not share the WAN constraint of the high cost of bandwidth. After the wire is installed, bandwidth is inexpensive because the company owns the wires and there is no recurring cost to a service provider. However, upgrading the physical wiring can be expensive.

Consequently, network designers generally deploy a campus design optimized for the fastest functional architecture that runs on the existing physical wire. They might also upgrade wiring to meet the requirements of emerging applications. For example, higher-speed technologies—such as Fast Ethernet, Gigabit Ethernet, and ATM as a backbone architecture—and Layer 2 switching provide dedicated bandwidth to the desktop.

Trends in Campus Design

In the past, network designers had only a limited number of hardware options—routers or hubs—when purchasing a technology for their campus networks. Consequently, it was rare to make a hardware design mistake. Hubs were for wiring closets, and routers were for the data-center or main telecommunications operations.

Recently, local-area networking has been revolutionized by the exploding use of LAN switching at Layer 2 (the data link layer) to increase performance and to provide more bandwidth to meet new data networking applications. LAN switches provide this performance benefit by increasing bandwidth and throughput for workgroups and local servers. Network designers are deploying LAN switches out toward the network's edge in wiring closets. As Figure 1-3 shows, these switches are usually installed to replace shared concentrator hubs and give higher-bandwidth connections to the end user.

Figure 1-3 Example of Trends in Campus Design

Layer 3 networking is required in the network to interconnect the switched workgroups and to provide services that include security, quality of service (QoS), and traffic management. Routing integrates these switched networks, and provides the security, stability, and control needed to build functional and scalable networks.

Traditionally, Layer 2 switching has been provided by LAN switches, and Layer 3 networking has been provided by routers. Increasingly, these two networking functions are being integrated into common platforms. Multilayer switches that provide Layer 2 and 3 functionality, for example, are now appearing in the marketplace.

With the advent of such technologies as Layer 3 switching, LAN switching, and virtual LANs (VLANs), building campus networks is becoming more complex than in the past. Table 1-1 summarizes the various LAN technologies required to build successful campus networks. Cisco Systems offers product solutions in all these technologies.

Table 1-1 Summary of LAN Technologies

LAN Technology

Typical Uses

Routing technologies

Routing is a key technology for connecting LANs in a campus network. It can be either Layer 3 switching or more traditional routing with Layer 3 switching and additional router features.

Gigabit Ethernet

Gigabit Ethernet builds on top of the Ethernet protocol but increases speed tenfold over Fast Ethernet to 1000 Mbps, or 1 Gbps. Gigabit Ethernet provides high-bandwidth capacity for backbone designs while providing backward compatibility for installed media.

LAN switching technologies—Ethernet switching

Ethernet switching provides Layer 2 switching and offers dedicated Ethernet segments for each connection. This is the base fabric of the network.

LAN switching technologies—Token Ring switching

Token Ring switching offers the same functionality as Ethernet switching but uses Token Ring technology. You can use a Token Ring switch as either a transparent bridge or as a source-route bridge.

ATM switching technologies

ATM switching offers high-speed switching technology for voice, video, and data. Its operation is similar to LAN switching technologies for data operations. ATM, however, offers high-bandwidth capacity.


Network designers are now designing campus networks by purchasing separate equipment types (for example, routers, Ethernet switches, and ATM switches) and then linking them. Although individual purchase decisions might seem harmless, network designers must not forget that this separate equipment still works together to form a network.

It is possible to separate these technologies and build thoughtful designs using each new technology, but network designers must consider the overall integration of the network. If this overall integration is not considered, the result can be networks that have a much higher risk of network outages, downtime, and congestion than ever before.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020