- Other Wireless Technologies
- IrDA and Bluetooth Wireless Communication Compared
- HomeRF and Bluetooth Wireless Communication Compared
- WPAN Technology Summary
- Notices
HomeRF™ and Bluetooth Wireless Communication Compared
HomeRF is a wireless radio communications technology developed by the HomeRF working group, an industry consortium not unlike the Bluetooth SIG (in fact, several companies participate in both groups). Like Bluetooth wireless communications, HomeRF operates in the 2.4GHz ISM band, using radio waves for relatively short-range voice and data communication among various types of devices. The impetus for developing the HomeRF technology was to provide a solution for wireless in-home networks.
HomeRF and Bluetooth technologies have many parallels. Both were developed at roughly the same time, and both operate in the unlicensed 2.4GHz ISM band for RF communications. Each one enables both voice and data traffic; and each one is designed for relatively short-range, low-power operation. The first products using these technologies were available by 2001.
The two technologies do have differences, though. In addition to technical differences such as packet structure and protocol layers that are not detailed here, other characteristics distinguish them. HomeRF was designed from the outset for home networking environments, whereas Bluetooth technology is optimized for use with WPANs and mobile. HomeRF communication range is about 50 meters (designed to cover a typical home), which is greater than the 10-meter range of the typical Bluetooth radio. Initially, the data rates of the two technologies were similar at about 1Mbps; recently, HomeRF version 2.0 has specified data rates up to 10Mbps. With all other factors being equal, higher data rates and greater range require more power consumption, so HomeRF often could require more power, although both technologies include power-saving schemes in their respective specifications.
Like any technologies that operate in the same frequency spectrum, HomeRF and Bluetooth wireless communications can interfere with each other. Radio frequency interference is to be expected in the unlicensed 2.4GHz ISM band. One means to mitigate RF interference is the use of frequency-hopping spread-spectrum (FHSS), and both of these technologies use FHSS as a way to deal with undesired interference. Other techniques also can be used to minimize the problem of RF interference among these and other RF emitters in the ISM band.