Home > Articles > Business & Management

This chapter is from the book

1.2 Business Analytics Process

The complete business analytics process involves the three major component steps applied sequentially to a source of data (see Figure 1.1). The outcome of the business analytics process must relate to business and seek to improve business performance in some way.

Figure 1.1

Figure 1.1 Business analytics process

The logic of the BA process in Figure 1.1 is initially based on a question: What valuable or problem-solving information is locked up in the sources of data that an organization has available? At each of the three steps that make up the BA process, additional questions need to be answered, as shown in Figure 1.1. Answering all these questions requires mining the information out of the data via the three steps of analysis that comprise the BA process. The analogy of digging in a mine is appropriate for the BA process because finding new, unique, and valuable information that can lead to a successful strategy is just as good as finding gold in a mine. SAS, a major analytic corporation (www.sas.com), actually has a step in its BA process, Query Drilldown, which refers to the mining effort of questioning and finding answers to pull up useful information in the BA analysis. Many firms routinely undertake BA to solve specific problems, whereas other firms undertake BA to explore and discover new knowledge to guide organizational planning and decision-making to improve business performance.

The size of some data sources can be unmanageable, overly complex, and generally confusing. Sorting out data and trying to make sense of its informational value requires the application of descriptive analytics as a first step in the BA process. One might begin simply by sorting the data into groups using the four possible classifications presented in Table 1.4. Also, incorporating some of the data into spreadsheets like Excel and preparing cross tabulations and contingency tables are means of restricting the data into a more manageable data structure. Simple measures of central tendency and dispersion might be computed to try to capture possible opportunities for business improvement. Other descriptive analytic summarization methods, including charting, plotting, and graphing, can help decision makers visualize the data to better understand content opportunities.

Table 1.4 Types of Data Measurement Classification Scales

Type of Data Measurement Scale

Description

Categorical Data

Data that is grouped by one or more characteristics. Categorical data usually involves cardinal numbers counted or expressed as percentages. Example 1: Product markets that can be characterized by categories of “high-end” products or “low-income” products, based on dollar sales. It is common to use this term to apply to data sets that contain items identified by categories as well as observations summarized in cross-tabulations or contingency tables.

Ordinal Data

Data that is ranked or ordered to show relational preference. Example 1: Football team rankings not based on points scored but on wins. Example 2: Ranking of business firms based on product quality.

Interval Data

Data that is arranged along a scale, in which each value is equally distant from others. It is ordinal data. Example 1: A temperature gauge. Example 2: A survey instrument using a Likert scale (that is, 1, 2, 3, 4, 5, 6, 7), where 1 to 2 is perceived as equidistant to the interval from 2 to 3, and so on. Note: In ordinal data, the ranking of firms might vary greatly from first place to second, but in interval data, they would have to be relationally proportional.

Ratio Data

Data expressed as a ratio on a continuous scale. Example 1: The ratio of firms with green manufacturing programs is twice that of firms without such a program.

From Step 1 in the Descriptive Analytic analysis (see Figure 1.1), some patterns or variables of business behavior should be identified representing targets of business opportunities and possible (but not yet defined) future trend behavior. Additional effort (more mining) might be required, such as the generation of detailed statistical reports narrowly focused on the data related to targets of business opportunities to explain what is taking place in the data (what happened in the past). This is like a statistical search for predictive variables in data that may lead to patterns of behavior a firm might take advantage of if the patterns of behavior occur in the future. For example, a firm might find in its general sales information that during economic downtimes, certain products are sold to customers of a particular income level if certain advertising is undertaken. The sales, customers, and advertising variables may be in the form of any of the measurable scales for data in Table 1.4, but they have to meet the three conditions of BA previously mentioned: clear relevancy to business, an implementable resulting insight, and performance and value measurement capabilities.

To determine whether observed trends and behavior found in the relationships of the descriptive analysis of Step 1 actually exist or hold true and can be used to forecast or predict the future, more advanced analysis is undertaken in Step 2, Predictive Analytic analysis, of the BA process. There are many methods that can be used in this step of the BA process. A commonly used methodology is multiple regression. (See Appendix A, “Statistical Tools,” and Appendix E, “Forecasting,” for a discussion on multiple regression and ANOVA testing.) This methodology is ideal for establishing whether a statistical relationship exists between the predictive variables found in the descriptive analysis. The relationship might be to show that a dependent variable is predictively associated with business value or performance of some kind. For example, a firm might want to determine which of several promotion efforts (independent variables measured and represented in the model by dollars in TV ads, radio ads, personal selling, or magazine ads) is most efficient in generating customer sales dollars (the dependent variable and a measure of business performance). Care would have to be taken to ensure the multiple regression model was used in a valid and reliable way, which is why ANOVA and other statistical confirmatory analyses support the model development. Exploring a database using advanced statistical procedures to verify and confirm the best predictive variables is an important part of this step in the BA process. This answers the questions of what is currently happening and why it happened between the variables in the model.

A single or multiple regression model can often forecast a trend line into the future. When regression is not practical, other forecasting methods (exponential smoothing, smoothing averages) can be applied as predictive analytics to develop needed forecasts of business trends. (See Appendix E.) The identification of future trends is the main output of Step 2 and the predictive analytics used to find them. This helps answer the question of what will happen.

If a firm knows where the future lies by forecasting trends as they would in Step 2 of the BA process, it can then take advantage of any possible opportunities predicted in that future state. In Step 3, Prescriptive Analytics analysis, operations research methodologies can be used to optimally allocate a firm’s limited resources to take best advantage of the opportunities it found in the predicted future trends. Limits on human, technology, and financial resources prevent any firm from going after all opportunities it may have available at any one time. Using prescriptive analytics allows the firm to allocate limited resources to optimally achieve objectives as fully as possible. For example, linear programming (a constrained optimization methodology) has been used to maximize the profit in the design of supply chains (Paksoy et al., 2013). (Note: Linear programming and other optimization methods are presented in Appendixes B, “Linear Programming,” C, “Duality and Sensitivity Analysis in Linear Programming,” and D, “Integer Programming.”) This third step in the BA process answers the question of how best to allocate and manage decision-making in the future.

In summary, the three major components of descriptive, predictive, and prescriptive analytics arranged as steps in the BA process can help a firm find opportunities in data, predict trends that forecast future opportunities, and aid in selecting a course of action that optimizes the firm’s allocation of resources to maximize value and performance. The BA process, along with various methodologies, will be detailed in Chapters 5 through 10.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020