Home > Articles > Programming > C/C++

Put on Your Sorting Hat: Which Algorithm Makes Your Sort 500 Times Faster?

Are you in a hurry? Brian Overland explains how to speed up your program's sorting capabilities by specifying the right type of sort for each occasion. Is your sort type fast to program but pokey to run? Zippy but a space hog? Learn why one algorithm is speedier than another—potentially hundreds of times faster!
Like this article? We recommend

Like this article? We recommend

Most people who've done any programming have at least heard about sorting algorithms. You may have read that the selection-sort or bubble-sort algorithm is the easiest to write, but did you know that it's also the slowest performer? The quick-sort algorithm is usually much faster, especially for large arrays. But why?

Expert programmers know why one algorithm is faster than others, as well as how to quantify that difference. In the case of sorting, we're talking about large potential differences: For an array 10,000 elements long, a merge sort isn't just two or three times as fast as a selection sort. In this case, the better algorithm is a hundred times faster! If your database had to sort a million elements, the contrast would be far greater still.

See why it pays to understand algorithms?

Old Reliable: The Selection Sort

Suppose you were stranded on a desert island and wanted to sort a row of coconuts. You'd probably do the following:

  1. Scan all the coconuts and put the smallest one in the first (leftmost) position.
  2. Among the remaining N-1 coconuts, put the smallest in the second position.
  3. Among the remaining N-2 coconuts, put the smallest in the third position.
  4. Continue until the entire row has been sorted.

There is probably no better way to sort an array manually, because a more complex procedure might confuse a human worker. As you'll see, though, computers can do better.

Of course, the computer can't just glance at an unsorted array and find the smallest element. There's no way to carry out the instruction "Find the smallest element" without doing N-1 comparisons, where N is the size of the group. The computer has to follow this procedure:

  1. Assume that the leftmost element is the smallest. Let's record this position as iMin. In C/C++ terms, that means that the integer variable iMin is initialized to 0.
  2. Compare the element from step 1 to the next element in the array. If the next element is smaller than the current minimum (that is, the element at position iMin), change the value of iMin to index this new position.
  3. Repeat this process until you reach the end of the array.
  4. If iMin doesn't index the leftmost element, swap the leftmost element with the element at position iMin.

Bear in mind that this is the procedure for finding the smallest element during one pass of the algorithm. You'll need to make repeated passes to sort the entire array.

Let's put it all together. (I'll show the C++ code in the next section.) For an array of size N, the total number of comparisons is determined as follows:

  • To find the smallest element, make N-1 comparisons.
  • To find the second-smallest element, make N-2 comparisons.
  • To find the third-smallest element, make N-3 comparisons.

So, for an array of size 6, the total number of comparisons required for sorting is as follows:

5 + 4 + 3 + 2 + 1 = 15

This may look familiar. It's an example of the "triangle number" calculation, which in this case can be expressed as follows:

( N (N—1) ) / 2

Computer scientists characterize this value as O(n2). You might object that this figure is really closer to O(n2/2), but in computer science, the factor of 2 is ignored as a measure of algorithm speed. Constant factors are ignored because what's of most interest here is how the work required increases with the number of elements.

Technically, this measurement is characterized by computer scientists with the term complexity—it doesn't measure time in any absolute sense, but rather measures how complex the work to be done is. Allowing for some constants we'll examine later, we can view O(n2) as a time-duration measurement.

A selection sort always requires O(n2) operations. Even if the array is already sorted, the algorithm has to make the same number of comparisons. Relatively speaking, O(n2) is expensive. What happens if we need to sort a million elements? Is it beginning to dawn on you that it's possible to do better?

Programming a Selection Sort

Although a selection sort is in many ways the worst algorithm, it's easy to program. The code takes each position in turn, starting with the first, and finds the lowest element in the range consisting of that position and everything to its right. In the C/C++ family of languages, of course, the first position is indexed as 0.

void sel_sort(int A[], int n) {
    int iMin;  // Index of min. value within range
    int temp;  // Temp. value used for swapping
    // Look at each position, starting w/ 0.
    for (int i = 0; i < n; i++) {
        iMin = i;  // Assume i is position of minimum elem.
                   // Note i is leftmost position in sub-range.

        // Compare min. value to each element to its RIGHT.
        // If smaller elem is found, it becomes the new min.

        for (int j = i; j < n; j++) {
            if (A[j] < A[iMin])
                iMin = j;
        }

        // A[iMin] now contains min. value in sub-range.
        // If min. element is not i, then swap!

        if (i != iMin) {
            temp = A[i];
            A[i] = A[iMin];
            A[iMin] = temp;
        }
    }
}

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020