Home > Articles > Engineering > Communications Engineering

What Is Bluetooth Low Energy?

Robin Heydon explains what BlueTooth low energy is, as well as relevant device types, design goals, and terminology.
This chapter is from the book
  • If I have seen a little further, it is by standing on the shoulders of Giants.
  • —Isaac Newton

Bluetooth low energy is a brand new technology that has been designed as both a complementary technology to classic Bluetooth as well as the lowest possible power wireless technology that can be designed and built. Although it uses the Bluetooth brand and borrows a lot of technology from its parent, Bluetooth low energy should be considered a different technology, addressing different design goals and different market segments.

Classic Bluetooth was designed to unite the separate worlds of computing and communications, linking cell phones to laptops. However its killer application has proved to be as an audio link from the cell phone to a headset placed on or around the ear. As the technology matured, more and more use cases were added, including stereo music streaming, phone book downloads from the phone to your car, wireless printing, and file transfer. Each of these new use cases required more bandwidth, and therefore, faster and faster radios have been constantly added to the Bluetooth ecosystem over time. Bluetooth started with Basic Rate (BR) with a maximum Physical Layer data rate of 1 megabit per second (Mbps). Enhanced Data Rate (EDR) was added in version 2.0 of Bluetooth to increase the Physical Layer data rates to 3Mbps; an Alternate MAC1 PHY2 (AMP) was added in version 3.0 of Bluetooth that used IEEE3 802.11 to deliver Physical Layer data rates of up to hundreds of megabits per second.

Bluetooth low energy takes a completely different direction. Instead of just increasing the data rates available, it has been optimized for ultra-low power consumption. This means that you probably won’t get high data rates, or even want to keep a connection up for many hours or days. This is an interesting move, as most wired and wireless communications technologies constantly increase speeds, as illustrated in Table 1–1.

Table 1–1. Speeds Almost Always Increase

Modems

Ethernet

V.21:0.3kbps

802.3i:10Mbps

V.22:1.2kbps

802.3u:100Mbps

V.32:9.6kbps

802.3ab:1000Mbps

V.34:28.8kbps

802.3an:10000Mbps

Wi-Fi

Bluetooth

802.11:2Mbps

v1.1:1Mbps

802.11b:11Mbps

v2.0:3Mbps

802.11g:54Mbps

v3.0:54Mbps

802.11n:135Mbps

v4.0:0.3Mbps

This different direction has been achieved through the understanding that classic Bluetooth technology cannot achieve the low power requirements required for devices powered by button-cell batteries. However, to fully understand the requirements around low power, another consideration must be taken. Bluetooth low energy is also designed to be deployed in extremely high volumes, in devices that today do not have any wireless technology. One method to achieve very high volumes is to be extremely low cost. For example, Radio frequency identification (RFID) tags can be deployed in very high volumes because they are very low cost, ultimately because they work by scavenging power delivered by a more expensive scanner.

Therefore, it is crucial to also look at the Bluetooth low energy system design from the requirements of low cost. Three key elements within this design point to very low cost:

  1. ISM Band

    The 2.4GHz ISM band is a terrible place to design and use a wireless technology. It has poor propagation characteristics, with the radio energy readily being absorbed by everything, but especially by water; consider that the human body is made up primarily of water. These rather significant downsides are made up by the fact that the radio spectrum is available worldwide and there are no license requirements. Of course, this Free Rent sign means that other technologies are also going to use this space, including most Wi-Fi radios. But the lack of licensing doesn’t mean that anything goes. There are still plenty of rules, mainly related to limiting the power output of devices that use the spectrum, limiting the range. However, these limitations are still more attractive than paying heavily for licensed spectrum. Therefore, choosing to use the ISM band lowers the cost.

  2. IP License

    When the Wibree technology was mature enough to be merged into an established wireless standards group, Nokia could have taken the technology to any such group. For example, it could have taken it to the Wi-Fi Alliance, which also standardizes technology in the same 2.4GHz ISM band. But they chose the Bluetooth Special Interest Group (SIG) because of the excellent reputation and licensing policy that this organization has. These policies basically mean that the patent licensing costs are significantly reduced for a Bluetooth device when compared with a technology developed in another SIG or association that has a FRAND4 policy. Because Bluetooth has a very low license costs, the cost per device is also significantly reduced.

  3. Low Power

    The best way to design a low-cost device is to reduce the materials required to make such a device—materials such as batteries. The larger the battery, the larger the battery casing needs to be, again increasing the costs. Replacing a battery costs money, not just for a consumer who needs to purchase another battery, but replacement also includes the opportunity costs of not having that device available. If this device is maintained by a third party, perhaps because it is part of a managed home alarm system, there are additional labor costs to change this battery. Therefore, designing the technology around low power consumption also reduces the costs. As a thought experiment, how would things be different if a megawatt battery were available for a single penny?

    Many devices could accommodate a larger battery. A keyboard or mouse can easily take AA batteries, yet the manufacturers want to use AAA batteries not because they are smaller, but because their use reduces the bill of materials and therefore the cost of the device.

Therefore, the fundamental design for low energy is to work with button-cell batteries—the smallest, cheapest, and most readily available type of battery available. This means that you cannot achieve high data rates or make low energy work for use cases that require large data transfers or the streaming of data. This single point is probably the most important difference between classic and low-energy variants of Bluetooth. This is discussed further in the next section.

1.1. Device Types

Bluetooth low energy makes it possible to build two types of devices: dual-mode and single-mode devices. A dual-mode device is a Bluetooth device that has support for both Bluetooth classic as well as Bluetooth low energy. A single-mode device is a Bluetooth device that only supports Bluetooth low energy. There is a third type of device, which is a Bluetooth classic-only device.

Because it supports Bluetooth classic, a dual-mode device can talk with the billions of existing Bluetooth devices. Dual-mode devices are new. They require new hardware and firmware in the controller and software in the host. It is therefore not possible to take an existing Bluetooth classic controller or host and upgrade it to support low energy. However, most dual-mode controllers are simple replacement parts for existing Bluetooth classic controllers. This allows designers of cell phones, computers, and other device to replace their existing Bluetooth classic controllers with dual-mode controllers very quickly.

Because it does not support Bluetooth classic, a Bluetooth low energy single-mode device cannot talk with the existing Bluetooth devices, but it can still talk with other single-mode devices as well as dual-mode devices. These new single-mode devices are highly optimized for ultra-low power consumption, being designed to go into components that are powered by button-cell batteries. Single-mode devices will also not be able to be used in most of the use cases for which Bluetooth classic is used today because single-mode Bluetooth low energy does not support audio for headsets and stereo music or high data rates for file transfers.

Table 1–2 shows what device types can talk with other devices types and what Bluetooth radio technology would be used when they connect. Single-mode devices will talk with other single-mode devices using low energy. Single-mode devices will also talk with dual-mode devices using low energy. Dual-mode devices will talk with other dual-mode devices or classic devices using BR/EDR. A single-mode device cannot talk with a classic device.

Table 1–2. Single-Mode, Dual-Mode, and Classic Compatibility

Single-Mode

Dual-Mode

Classic

Single-Mode

LE

LE

none

Dual-Mode

LE

Classic

Classic

Classic

none

Classic

Classic

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020