Home > Articles > Programming

This chapter is from the book

29.7 Lessons Learned from Test Automation in an Embedded Hardware–Software Computer Environment

Jon Hagar, United States

Engineer, trainer, and consultant

Embedded systems comprise specialized hardware, software, and operations. They come with all of the problems of normal software, but they also include some unique aspects:

  • Specialized hardware that the software “controls” with long and concurrent development cycles.
  • Hardware problems that are “fixed” in the software late in the project.
  • Limited user interfaces and minimal human intervention.
  • Small amounts of dense, complex functions often in the control theory domain (e.g., calculating trajectories, flight dynamics, vehicle body characteristics, and orbital targets).
  • (A big one) Very tight real-time performance issues (often in millisecond or microsecond ranges).

Products that make up embedded software systems now span the automotive, control, avionics, medical, telecom, electronics, and almost every other product domain one can think of. I have been involved in space avionics (guidance, navigation, and control software), but many of the approaches and lessons learned are applicable to other embedded software systems. In this section, we use examples drawn from a hypothetical but historically based space flight software embedded system.

The goal of verification, validation, and testing (VV&T) is to show that embedded software is ready for use and the risk of failure due to software can be considered acceptable by the stakeholders.

Development programs can be small—for example, 30,000 source lines of code (with staffs of 10 to 60 people)—yet these programs are time and computationally complex and are critical to the successful control of the hardware system.

29.7.1 VV&T Process and Tools

We typically have four levels of testing and tools that support each level. The lowest level is probably the most different for embedded systems because it is nearest to the hardware. It uses a host/target configuration and cross-compiled code (including automation code). Cross-compiling is where source code is compiled on one computer, not into the binary (executable) of that (host) computer but rather into binary executable code that will run on a different computer (the “target”) that is too limited to be able to run a compiler on. Our testing at this level aims to check against standards and code coverage as well as requirements and design and is automated by the developer.

We call this “implementation structural verification testing” (some places call this unit testing). This testing is conducted with a digital simulation of the computer and/or a single-board target hardware-based computer.

The implementation test tools were customized in the beginning, but other off-the-shelf tools were added later. Examples include LDRA TBrun, Cantata, and AdaTEST. The project used both test-driven development and code-then-test implementation approaches. The comparison and review of results, which include very complex calculations, is done using test oracle information generated from commercial tools such as MATLAB, BridgePoint, and Mathmatica.

The middle level, which we call design-based simulation tools, uses tools that are based on software architecture structures and design information, which have been integrated across module boundaries. These tools allow the assessment of software for particular aspects individually. In some projects, model-based development tools, BridgePoint, and MATLAB were used, and this enabled the integration efforts to go better than in past systems, because the models enforced rules and checks that prevented many integration defects from happening in the first place.

The next level is requirements-based simulation (scientific simulation tools). These simulations (driven by models) are done in both a holistic way and based on individual functions. For example, a simulation may model the entire boost profile of a system with full vehicle dynamics simulation, and another simulation may model the specifics of how the attitude thrust vector control works.

This allows system evaluation from a microscopic level to a macroscopic level. The results from one level can be used as automated oracles to other levels of VV&T test supporting “compare” activities.

This approach of using simulation/models to drive and analyze test results comes with a risk. There is the chance that an error can be contained in the model or tool that replicates and “offsets” an error in the actual product (a self-fulfilling model result). This is a classic problem with model-based test oracles. To help with this risk, the project used the levels of testing (multiple compares), a variety of tools, different VV&T techniques, and expert skilled human reviewers who were aware of this risk. These methods, when used in combination with testing, were found to detect errors if they exist (one major objective) and resulted in software that worked.

Finally, at a system level, VV&T of the software uses actual hardware in the loop and operations. An extensive, real-time, continuous digital simulation modeling and feedback system of computers is used to test the software in a realistic environment with the same interfaces, inputs, and outputs as in the actual system. The system under test runs in actual real time; thus there is no speed-up or slow-down of time due to the test harness. Additionally, with hardware in the loop and realistic simulations, complete use scenarios involving the hardware and software could be played out with both for typical usage scenarios (daily use) and unusual situations such as high load, boundary cases, and invalid inputs.

29.7.2 Lessons Learned

This section summarizes some general observations that the projects had during the initial setup and use of automated VV&T tools:

  • Training: It is important to allow both time and money for training on tools and testing.
  • Planning: Tools must be planned for and developed like any software effort. Automated VV&T tools are not “plug and play.” To be successful, plan for development, establish a schedule and budget, integrate with existing processes, plan the test environment, and also test the test tools. Test tools must be “engineered” like any development effort.
  • Have an advocate: Test tools need a champion in order for them to become incorporated into common use. The champion is someone who knows the tools and advocates their use. Success comes from getting staff to think “outside the automated tool box.” The new tools must “integrate” with the existing staff, which means education, mentoring, and some customization. Advocates work these issues.
  • Usability of a tool must be reasonable for the users: While people will need training on tools, and tools by nature have complexities, a tool that is too hard to use or is constantly in revision by vendors leads to frustration by users that, in the extreme, will lead to shelfware. Ensure that the user interface is part of the selection evaluation before purchasing any tool.
  • Expect some failures and learn from them: Our project explored several tools that were abandoned after an initial period of time. While failure is not good, it is really only total failure when one does not learn from the mistake. Also, management must avoid blaming engineers for the failure of an idea because doing so stifles future ideas.
  • Know your process: Automated test tools must fit within your process. If you lack process, just having tools will probably result in failure. Expect some changes in your process when you get a new tool, but a tool that is outside of your process will likely become shelfware.
  • Embedded systems have special problems in test automation: Despite progress, automated test tools do not totally solve all embedded VV&T problems. For example, our projects found issues in dealing with cross-compiling, timing, initialization, data value representation, and requirements engineering. These can be overcome, but that means vendors have more functions to add and projects will take more money and time. Plan for the unexpected.
  • Tools evolve: Plan on test tool integration cycles with increments.
  • Configuration management (CM): Even with VV&T tools, projects need to manage and control all aspects of the configuration, including the test tools as well as the test data.

29.7.3 Summary of Results

Although I am not permitted to reveal specific data, when compared to custom-developed tools and manual testing, establishing an automated commercial-based VV&T environment took about 50 percent fewer people. The projects tend to take these savings to create more and/or better automated tests. While adding to test automation, the projects maintained and improved functionality and quality. Further, maintenance-regression costs decreased because vendors provided upgrades for a low annual fee (relative to staff costs for purely customized tools). Commercial tools have a disadvantage of lacking total project process customization, but this has proven to be a minor issue as long as the major aspects of the process were supported by the tools.

Additionally, the projects reduced test staff work hours by between 40 and 75 percent (based on past VV&T cycles). We found that our test designers were more productive. We created the same number of tests and executed them in less time and found more defects earlier and faster. We had fewer “break-it, fix-it” cycles of regression testing, which meant that less effort was needed to achieve the same level of quality in the testing and the same defect detection rates.

In an embedded software VV&T environment, automated test tools can be good if you consider them as tools and not “magic bullets.” People make tools work, and people do the hard parts of VV&T engineering that tools cannot do. Tools can automate the parts humans do not like or are not good at. Embedded projects continue to evolve VV&T automation. VV&T automation tools take effort, increments, and iterations. Tools aid people—but are not a replacement for them.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020