Home > Articles > Certification > Cisco Certification > CCDP

This chapter is from the book

Designing Scalable EIGRP Designs

This section focuses on designing advanced routing solutions using Enhanced Interior Gateway Routing Protocol (EIGRP). It describes how to scale EIGRP designs and how to use multiple EIGRP autonomous systems in a large network.

Scaling EIGRP Designs

EIGRP is tolerant of arbitrary topologies for small and medium networks. This is both a strength and a weakness. It is useful to be able to deploy EIGRP without restructuring the network. As the scale of the network increases, however, the risk of instability or long convergence times becomes greater. For example, if a network has reached the point where it includes 500 routers, EIGRP may stop working well without a structured hierarchy. As the size of the network increases, more stringent design is needed for EIGRP to work well.

To scale EIGRP, it is a good idea to use a structured hierarchical topology with route summarization.

One of the biggest stability and convergence issues with EIGRP is the propagation of EIGRP queries. When EIGRP does not have a feasible successor, it sends queries to its neighbors. The query tells the neighbor, "I do not have a route to this destination any more; do not route through me. Let me know if you hear of a viable alternative route." The router has to wait for replies to all the queries it sends. Queries can flood through many routers in a portion of the network and increase convergence time. Summarization points and filtered routes limit EIGRP query propagation and minimize convergence time.

Feasible distance is the best metric along a path to a destination network, including the metric to the neighbor advertising that path. Reported distance is the total metric along a path to a destination network as advertised by an upstream neighbor. A feasible successor is a path whose reported distance is less than the feasible distance (current best path).

EIGRP Fast Convergence

Customers have been using EIGRP to achieve subsecond convergence for years. Lab testing by Cisco has shown that the key factor for EIGRP convergence is the presence or absence of a feasible successor. When there is no feasible successor, EIGRP uses queries to EIGRP peers and has to wait for responses. This slows convergence.

Proper network design is required for EIGRP to achieve fast convergence. Summarization helps limit the scope of EIGRP queries, indirectly speeding convergence. Summarization also shrinks the number of entries in the routing table, which speeds up various CPU operations. The effect of CPU operation on convergence is much less significant than the presence or absence of a feasible successor. A recommended way to ensure that a feasible successor is present is to use equal-cost routing.

EIGRP metrics can be tuned using the delay parameter. However, adjusting the delay on links consistently and tuning variance are next to impossible to do well at any scale.

In general, it is unwise to have a large number of EIGRP peers. Under worst-case conditions, router CPU or other limiting factors might delay routing protocol convergence. A somewhat conservative design is best to avoid nasty surprises.

EIGRP Fast-Convergence Metrics

This section discusses EIGRP fast-convergence metrics. Cisco tested convergence of various routing protocols in the lab, as shown in Figure 3-7.

Figure 3-7

Figure 3-7 EIGRP Fast Convergence

EIGRP convergence time increases as more routes need to be processed. However, there is a much bigger impact for networks without EIGRP feasible successors than for networks with no feasible successors.

With a feasible successor present, EIGRP converges in times ranging from about 1/10 second for 1000 routes to about 1.2 seconds for 10,000 routes. Without the feasible successor, convergence times increased to 1/2 to 1 second for 1000 routes and to about 6 seconds for 10,000 routes.

Subsecond timers are not available for EIGRP. One reason is that the hello timer is not the most significant factor in EIGRP convergence time. Another is that experimentation suggests that setting the EIGRP timer below two seconds can lead to instability. The recommended EIGRP minimum timer settings are two seconds for hellos and six seconds for the dead timer. Subsecond settings are not an option.

Scaling EIGRP with Multiple Autonomous Systems

Implementing multiple EIGRP autonomous systems is sometimes used as a scaling technique. The usual rationale is to reduce the volume of EIGRP queries by limiting them to one EIGRP autonomous system. However, there can be issues with multiple EIGRP autonomous systems, as shown in Figure 3-8.

Figure 3-8

Figure 3-8 Scaling EIGRP with Multiple Autonomous Systems

One potential issue is with the external route redistribution. In Figure 3-8, a route is redistributed from RIP into autonomous system 200. Router A redistributes it into autonomous system 100. Router B hears about the route prefix in advertisements from both autonomous system 200 and autonomous system 100. The AD is the same because the route is external to both autonomous systems.

The route that is installed into the EIGRP topology database first gets placed into the routing table.

Example: External Route Redistribution Issue

If router B selects the route via autonomous system 100, it then routes to the RIP autonomous system indirectly, rather than directly via autonomous system 200, as illustrated in Figure 3-9.

Figure 3-9

Figure 3-9 Example: External Route Redistribution Issue

Router B also advertises the route via autonomous system 100 back into autonomous system 200. Suppose B has a lower redistribution metric than router C does. If that is the case, A prefers the route learned from B over the route learned from C. In this case, A forwards traffic for this route to B in autonomous system 200, and B forwards traffic back to A in autonomous system 100. This is a routing loop!

If two EIGRP processes run and two equal paths are learned, one by each EIGRP process, both routes do not get installed. The router installs the route that was learned through the EIGRP process with the lower autonomous system number. In Cisco IOS Software Releases earlier than 12.2(7)T, the router installed the path with the latest time stamp received from either of the EIGRP processes. The change in behavior is tracked by Cisco bug ID CSCdm47037.

The same sort of behavior may be seen with redistribution between two routing protocols, especially for routes learned from the protocol with the lower AD.

Filtering EIGRP Redistribution with Route Tags

Outbound route tags can be used to filter redistribution and support EIGRP scaling with multiple EIGRP autonomous systems, as shown in Figure 3-10.

Figure 3-10

Figure 3-10 Filtering EIGRP Redistribution with Route Tags

External routes can be configured to carry administrative tags. When the external route is redistributed into autonomous system 100 at router A or B, it can be tagged. This tag can then be used to filter the redistribution of the route back into autonomous system 200. This filtering blocks the formation of the loop, because router A will no longer receive the redistributed routes from router B through autonomous system 200.

In the configuration snippets, when routers A and B redistribute autonomous system 200 routes into autonomous system 100, they tag the routes with tag 100. Any routes tagged with tag 100 can then be prevented from being redistributed back into autonomous system 200. This successfully prevents a routing loop from forming.

Filtering EIGRP Routing Updates with Inbound Route Tags

You can filter EIGRP routing updates with inbound route tags to support scaling with multiple EIGRP autonomous systems, as shown in Figure 3-11.

Figure 3-11

Figure 3-11 Filtering EIGRP Routing Updates with Inbound Route Tags

Filtering outbound tags in the previous example does not prevent router B from learning the routes from autonomous system 100. Router B could still perform suboptimal routing by accepting the redistributed route learned from autonomous system 100.

The solution is to use inbound route tag filtering. This technique prevents routers from learning such routes, in which case they also will not be redistributed or advertised outbound. The Cisco bug fix CSCdt43016 provides support for incoming route filtering based on route maps. It allows for filtering routes based on any route map condition before acceptance into the local routing protocol database. This fix works for EIGRP and OSPF, starting with the Cisco IOS Software Releases 12.2T and 12.0S.

When routes are filtered to prevent router B from learning them, you prevent suboptimal routing by router B. The syntax shifts from using a route map with a redistribute command to using a route map with an inbound distribute-list command.

Example: Queries with Multiple EIGRP Autonomous Systems

This example looks at the query behavior with multiple EIGRP autonomous systems. This is illustrated in Figure 3-12.

Figure 3-12

Figure 3-12 Example: Queries with Multiple EIGRP Autonomous Systems

If router C sends an EIGRP query to router A, router A needs to query its neighbors. Router A sends a reply to router C, because it has no other neighbors in autonomous system 200. However, router A must also query all of its autonomous system 100 neighbors for the missing route. These routers may have to query their neighbors.

In this example, the query from router C is answered promptly by router A, but router A still needs to wait for the response to its query. Having multiple autonomous systems does not stop queries; it just delays them on the way.

What really stops a query is general scaling methods using summarization, distribution lists, and stubs.

Reasons for Multiple EIGRP Autonomous Systems

There are several valid reasons for having multiple EIGRP autonomous systems, including the following:

  • Migration strategy after a merger or acquisition: Although this is not a permanent solution, multiple autonomous systems are appropriate for merging two networks over time.
  • Different groups administer the different EIGRP autonomous systems: This scenario adds complexity to the network design, but might be used for different domains of trust or administrative control.
  • Organizations with very large networks may use multiple EIGRP autonomous systems as a way to divide their networks: Generally, this type of design approach uses summary routes at autonomous system boundaries to contain summary address blocks of prefixes in very large networks and to address the EIGRP query propagation issue.

These reasons for using multiple EIGRP autonomous systems can be appropriate, but pay careful attention to limiting queries.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020