Home > Articles > Web Services > XML

This chapter is from the book

Composition Techniques: Common Concepts

Every composed representation requires some ability to express how an XML document is composed from the rows and columns of an SQL database. Over the last several years, many different approaches have been tried, some as research projects, some commercially. These techniques may look very different, but they have a number of conceptual similarities, which we will examine. In the next section we look at some specific techniques that use these concepts. As usual, we do not attempt to list the different composition techniques currently in use by vendors, concentrating instead on the underlying principles and variations.

Certain concepts are common to most composition techniques. First of all, a composition technique is either implicit or explicit. With an implicit technique, the user or application has no control over how the relational data is translated into XML. An explicit technique allows control (either on the part of the application accessing the XML or, in the case of shredding, during the design of the database representation).

If explicit control is allowed, it may include the following capabilities:

  1. Select which tables and columns to use in the XML document. Some techniques allow you to specify a (SQL) query to use as a starting point, which also allows for joins, selections, data transformations, and aggregations to occur over the source data before using it to generate the XML. As we will see, however, this has serious implications for update.

  2. Map rows from tables (or queries) onto XML elements. That is, we can create an XML element for every row in a table (or query result).

  3. Map columns from tables (or queries) onto XML elements or attributes. The column value is generally the element or attribute value.

  4. Choose names for the XML elements or attributes.

  5. Allow control over datatype coercions and formatting.

  6. Add fixed XML elements, attributes and/or values. This allows the creation of certain kinds of additional structure in the XML. As a simple example, most composition techniques would allow the addition of the fixed address element in the following XML (where the database might have contained columns for name, street, etc.):

    <name>Francis Smith</name>
    <address>
       <street>123 Main St.</street>
       <city>Anytown</city>
       <state>OH</state>
       <zip>88888</zip>
    </address>
    
  7. Create additional XML structure by allowing the specification of additional XML-producing operations on the relational data. This item is the most significant. Since the output of SQL queries is relational, we need some non-SQL way to generate more complex hierarchical data. The main way to do that is to model some relationships in the XML by special XML-generating operations on the relational data. We examine two such operations in detail in the following sections: hierarchical joins and grouping. These operations are very closely related to their normal SQL counterparts, but we must keep in mind that they are different: relational join with and group by generate relational results, while the operations we introduce generate hierarchical XML results.

  8. An additional level of complexity and power is introduced if explicit control is allowed to compute whether or not an element or attribute will be present in the XML document via an arbitrary expression (in contrast with the usual case: An element is present if its content value is non-null) or to compute an element or attribute's name via an expression. Most composition techniques do not support this level of control. Sometimes, however, we need these capabilities in order to generate an XML document according to a certain standard. Usually in this case some form of composition is combined with XQuery or another transformation language to achieve the final XML (we demonstrate this kind of combination when we describe default mappings in the next section).

Here's a scorecard of how these different capabilities match up with different application types: As a general rule, all of them support the application types of selecting from, querying, and transforming XML documents. Update applications are compatible with items 1–5, so long as the values for the XML come from a single SQL table; as soon as joins or many other SQL capabilities are involved, full update capability becomes impossible (though limited update capability may still exist). Items 6 and 7 are also not compatible with full update capability. These are specific examples of a general problem known in the relational database world as “updating through views.” The problem stems from the fact that the operations of a powerful query language are not, in general, uniquely reversible. Therefore, if one attempts to update the result of a (nonreversible) query, there is usually no unique way to determine how to update the original data in a corresponding way. A simple example is attempting to update a generated field that has been created by concatenating two source fields: If you change the value of the concatenation, how should you “break” that value across the sources? To preserve update capability, therefore, we must restrict the complexity of the query or transformation operations to those that are reversible.

Generation of XML Structure through Hierarchical Joins

To illustrate generation of XML with a join schematically, suppose that we have two tables, Table A and Table B. If we generate XML structure through a join from A to B, the XML is going to look something like that shown in Listing 6.4. The general idea is that within an element corresponding to a row of Table A, there are subelements that correspond to “matching” rows in Table B—that is, the rows of Table B that join with a particular row of Table A. The relationship is actually most similar to a relational left outer join, because the mapping usually contains all rows of Table A, even those which have no corresponding rows in Table B.

Listing 6.4 Generation of XML Structure from a Join between Two Tables

<ElementforRowofA>
   <SubElementFromColumnofA>
   ...
   <SubElementforMatchingRowofB>
      <SubElementFromColumnofB>
      ...
   </SubElementforMatchingRowofB>
   <SubElementforMatchingRowofB>
      <SubElementFromColumnofB>
      ...
   </SubElementforMatchingRowofB>
   ...
</ElementforRowofA>

The structure shown in Listing 6.4 may vary, of course. In general, the elements corresponding to data from Table A may be intermixed with those corresponding to data from Table B. Some element may contain all the data from Table B collectively, or the elements shown that contain all the data from a given row of B may be missing.

Most important, there is no limitation on the number of tables that may be joined in this fashion to produce a single XML document. Listing 6.5 shows an example that uses four tables. Note in particular that Table A joins to B, which in turn joins to C, while separately Table A joins to D. We call this arrangement a nonlinear hierarchy, because A has more than a single child that has been added through different hierarchical joins. Note that this relationship could not be modeled with standard relational joins (though it could be modeled in a nested-relational representation). Creating XML structure through hierarchical joins is the most widely supported and most commonly used idiom in composition. It is particularly useful with normalized relational data or star schemas.

Listing 6.5 Complex Hierarchy Generated through Multiple Joins

<ElementforA>
   <AContents>...
   <ElementsforB>
      <BContents>...
      <ElementsforC>
         <CContents>...
      </ElementsforC>
   </ElementsforB>
   <ElementsforD>
      <DContents>...
   </ElementsforD>
</ElementforA>

Generation of XML Structure through Hierarchical Grouping

To illustrate generation of XML with hierarchical grouping, suppose that we generate XML structure through grouping on a single Table A. The resulting XML will look similar to that in Listing 6.6. In this scenario, we create an XML element for every unique value of a set of grouping columns of A, and then within that element occur subelements corresponding to data for nongrouped columns of the individual rows within the group. Generating structure through hierarchical grouping is particularly useful if we want to recreate a “normalized” XML structure from denormalized relational data.

Listing 6.6 Generation of XML Structure from Grouping on a Single Table

<ElementforGroupKeyofA>
   <SubElementFromGroupingColumnofA>
   ...
   <SubElementforSingleRowofA>
      <SubElementFromNonGroupedColumnofA>
      ...
   </SubElementforSingleRowofA>
   <SubElementforSingleRowofA>
      <SubElementFromNonGroupedColumnofA>
      ...
   </SubElementforSingleRowofA>
   ...
</ElementforGroupKeyofA>

Most composition techniques do not provide direct support for hierarchical grouping. When such support is lacking, the same effect can be generated by joining Table A to itself, where the “outer table” is a query that generates the unique group keys from A, and the inner table retrieves the matching rows. But the self-join technique can be much more expensive than a direct implementation of grouping.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020