Home > Articles > Security > Network Security

Cisco ASA Authentication, Authorization, and Accounting Network Security Services

This chapter provides a detailed explanation of the configuration and troubleshooting of authentication, authorization, and accounting (AAA) network security services that Cisco ASA supports.
This chapter is from the book

This chapter covers the following topics:

  • AAA protocols and services supported by Cisco ASA
  • Defining an authentication server
  • Authenticating administrative sessions
  • Configuring authorization
  • Configuring downloadable ACLs
  • Configuring accounting
  • Troubleshooting AAA

This chapter provides a detailed explanation of the configuration and troubleshooting of authentication, authorization, and accounting (AAA) network security services that Cisco ASA supports. AAA offers different solutions that provide access control to network devices. The following services are included within its modular architectural framework:

  • Authentication—The process of validating users based on their identity and predetermined credentials, such as passwords and other mechanisms like digital certificates.
  • Authorization—The method by which a network device assembles a set of attributes that regulates what tasks the user is authorized to perform. These attributes are measured against a user database. The results are returned to the network device to determine the user's qualifications and restrictions. This database can be located locally on Cisco ASA or it can be hosted on a RADIUS or Terminal Access Controller Access-Control System Plus (TACACS+) server.
  • Accounting—The process of gathering and sending user information to an AAA server used to track login times (when the user logged in and logged off) and the services that users access. This information can be used for billing, auditing, and reporting purposes.

AAA Protocols and Services Supported by Cisco ASA

Cisco ASA can be configured to maintain a local user database or to use an external server for authentication. The following are the AAA authentication underlying protocols and servers that are supported as external database repositories:

  • RADIUS
  • TACACS+
  • RSA SecurID (SDI)
  • Windows NT
  • Kerberos
  • Lightweight Directory Access Protocol (LDAP)

Table 6-1 shows the different methods and the functionality that each protocol supports.

Table 6-1. AAA Support Matrix

Method

Authentication

Authorization

Accounting

Internal server

Yes

Yes

No

RADIUS

Yes

Yes

Yes

TACACS+

Yes

Yes

Yes

SDI

Yes

No

No

Windows NT

Yes

No

No

Kerberos

Yes

No

No

LDAP

No

Yes

No

Using an external authentication server in medium and large deployments is recommended, for better scalability and easier management.

Cisco ASA supports the authentication methods listed in Table 6-1 with the following services:

  • Virtual private network (VPN) user authentication
  • Administrative session authentication
  • Firewall session authentication (cut-through proxy)

Table 6-2 outlines the support for the authentication methods in correlation to the specific services.

Table 6-2. Authentication Support Services

Service

Local

RADIUS

TACACS+

SDI

Windows NT

Kerberos

VPN users

Yes

Yes

Yes

Yes

Yes

Yes

Administration

Yes

Yes

Yes

No

No

No

Firewall sessions

Yes

Yes

Yes

No

No

No

Cisco ASA VPN user authentication support is similar to the support provided on the Cisco VPN 3000 Series Concentrator.

As previously mentioned, the authorization mechanism assembles a set of attributes that describes what the user is allowed to do within the network or service. Cisco ASA supports local and external authorization, depending on the service used. Table 6-3 shows the authorization support matrix.

Table 6-3. Authorization Support

Service

Local

RADIUS

TACACS+

SDI

NT

Kerberos

LDAP

VPN users

Yes

Yes

No

No

No

No

Yes

Administration

Yes

No

Yes

No

No

No

No

Firewall sessions

No

No

Yes

No

No

No

No

Accounting is supported by RADIUS and TACACS+ servers only. Table 6-4 shows the Cisco ASA accounting support matrix.

Table 6-4. Accounting Support

Service

Local

RADIUS

TACACS+

SDI

NT

Kerberos

LDAP

VPN users

No

Yes

Yes

No

No

No

No

Administration

No

Yes

Yes

No

No

No

No

Firewall sessions

No

Yes

Yes

No

No

No

No

The following subsections introduce each of the authentication protocols and servers that Cisco ASA supports.

RADIUS

RADIUS is a widely implemented authentication standard protocol that is defined in RFC 2865, "Remote Authentication Dial-In User Service (RADIUS)." RADIUS operates in a client/server model. A RADIUS client is usually referred to as a network access server (NAS). A NAS is responsible for passing user information to the RADIUS server. Cisco ASA acts as a NAS and authenticates users based on the RADIUS server's response.

The RADIUS server receives user authentication requests and subsequently returns configuration information required for the client (in this case, the Cisco ASA) to support the specific service to the user. The RADIUS server does this by sending Internet Engineering Task Force (IETF) or vendor-specific attributes. (RADIUS authentication attributes are defined in RFC 2865.) Figure 6-1 illustrates how this process works.

Figure 6-1

Figure 6-1 Basic RADIUS Authentication Process

In this example, a Cisco ASA acts as a NAS and the RADIUS server is a Cisco Secure Access Control Server (ACS). The following sequence of events is shown in Figure 6-1:

  • Step 1. A user attempts to connect to the Cisco ASA (i.e., administration, VPN, or cut-through proxy).
  • Step 2. The Cisco ASA prompts the user, requesting a username and password. The user sends his or her credentials to the Cisco ASA.
  • Step 3. The Cisco ASA sends the authentication request (Access-Request) to the RADIUS server.
  • Step 4. The RADIUS server sends an Access-Accept message (if the user is successfully authenticated) or an Access-Reject (if the user is not successfully authenticated).
  • Step 5. The Cisco ASA responds to the user and allows access to the specific service.

The RADIUS server can also send IETF or vendor-specific attributes to the Cisco ASA, depending on the implementation and services used. These attributes can contain information such as an IP address to assign the client and authorization information. RADIUS servers combine authentication and authorization phases into a single request-and-response communication cycle. The Cisco ASA authenticates itself to the RADIUS server by using a preconfigured shared secret. For security reasons, this shared secret is never sent over the network.

The RADIUS servers can also proxy authentication requests to other RADIUS servers or other types of authentication servers. Figure 6-2 illustrates this methodology.

Figure 6-2

Figure 6-2 RADIUS Server Acting as Proxy to Other Authentication Servers

In Figure 6-2, RADIUS Server 1 acts as a proxy to RADIUS Server 2. It sends the authentication request from the Cisco ASA to RADIUS Server 2 and proxies the response back to the ASA.

TACACS+

TACACS+ is an AAA security protocol that provides centralized validation of users who are attempting to gain access to NASs. The TACACS+ protocol offers support for separate and modular AAA facilities. The TACACS+ protocol's primary goal is to supply complete AAA support for managing multiple network devices.

TACACS+ uses port 49 for communication and allows vendors to use either User Datagram Protocol (UDP) or TCP encoding. Cisco ASA uses the TCP version for its TACACS+ implementation.

The TACACS+ authentication concept is similar to RADIUS. The NAS sends an authentication request to the TACACS+ server (daemon). The server ultimately sends any of the following messages back to the NAS:

  • ACCEPT—User has been successfully authenticated and the requested service is allowed. If authorization is required, the authorization process begins at this point.
  • REJECT—User authentication is denied. The user may be prompted to retry authentication, depending on the TACACS+ server and NAS.
  • ERROR—A certain error takes place during authentication. This can be experienced because of network connectivity problems or a configuration error.
  • CONTINUE—User is prompted to provide further authentication information.

After the authentication process is complete, if authorization is required the TACACS+ server proceeds with the authorization phase. The user must first successfully be authenticated before proceeding to TACACS+ authorization.

RSA SecurID

RSA SecurID (SDI) is a solution provided by RSA Security. The RSA ACE/Server is the administrative component of the SDI solution. It enables the use of one-time passwords (OTPs). Cisco ASA supports SDI authentication natively only for VPN user authentication. However, if it is using an authentication server, such as CiscoSecure ACS for Windows NT, the server can use external authentication to an SDI server and proxy the authentication request for all other services supported by Cisco ASA. Cisco ASA and SDI use UDP port 5500 for communication.

The SDI solution uses small physical devices called tokens that provide users with an OTP that changes every 60 seconds. These OTPs are generated when a user enters a personal identification number and are synchronized with the server to provide the authentication service. The SDI server can be configured to require the user to enter a new PIN when trying to authenticate. This process is called New PIN mode, which Cisco ASA supports. Figure 6-3 demonstrates how this solution works when a user attempts to connect to the Cisco ASA using the Cisco VPN Client software.

Figure 6-3

Figure 6-3 SDI Authentication Using New PIN Mode

The purpose of New PIN mode is to allow the user to change its PIN for authentication. The following sequence of events occurs when using SDI authentication with the New PIN mode feature, as shown in Figure 6-3:

  • Step 1. The user attempts to establish a VPN connection with the Cisco VPN client and negotiates IKE Phase 1. (Complete information about IKE and IPSec negotiations is provided in Chapter 1, "Introduction to Security Technologies.")
  • Step 2. The Cisco ASA prompts the user for authentication via X-Auth (extended authentication). The user provides a username and passcode. (X-Auth is also covered in Chapter 17, "IPSec Remote Access VPNs.")
  • Step 3. The Cisco ASA forwards the authentication request to the SDI server.
  • Step 4. If New PIN mode is enabled, the SDI server authenticates the user and requests a new PIN to be used during the next authentication session for that user.
  • Step 5. The Cisco ASA prompts the user for a new PIN.
  • Step 6. User enters new PIN.
  • Step 7. The Cisco ASA sends the new PIN information to the SDI server.

Microsoft Windows NT

Cisco ASA supports Windows NT native authentication only for VPN remote-access connections. It communicates with the Windows NT server via TCP port 139. Similarly to SDI, you can use a RADIUS/TACACS+ server, such as CiscoSecure ACS, to proxy authentication to Windows NT for other services supported by Cisco ASA.

Active Directory and Kerberos

Cisco ASA can authenticate VPN users via an external Windows Active Directory, which uses Kerberos for authentication. Kerberos is an authentication protocol created by the Massachusetts Institute of Technology (MIT) that provides mutual authentication used by many vendors and applications. It can also communicate with a UNIX/Linux-based Kerberos server. Support for this authentication method is available for VPN clients only. Cisco ASA communicates with the Active Directory and/or a Kerberos server via UDP port 88. Configuration and troubleshooting of remote access VPN tunnels are covered in Chapter 16, "Site-to-Site IPSec VPNs."

Lightweight Directory Access Protocol

Cisco ASA supports LDAP authorization for remote-access VPN connections only. The LDAP protocol is defined in RFC 3377, "Lightweight Directory Access Protocol (v3)," and RFC 3771, "The Lightweight Directory Access Protocol (LDAP) Intermediate Response Message." LDAP provides authorization services when given access to a user database within a Directory Information Tree (DIT). This tree contains entities called entries, which consist of one or more attribute values called distinguished names (DNs). The DN values must be unique within the DIT.

HTTP Form Protocol

The Cisco ASA supports single sign-on (SSO) authentication of WebVPN users, using the HTTP Form protocol. The SSO feature is designed to allow WebVPN users to enter a username and password only once while accessing WebVPN services and any web servers behind the Cisco ASA.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020