Home > Articles > Engineering > Semiconductor Technologies

This chapter is from the book

1.8 Signal Lines Referenced to Planes

In high-frequency packages and PCBs, the signal lines are often routed over or between planes. The planes provide shielding for the signal lines by minimizing coupling between the signal lines routed on the same layer or on different layers. In addition, the planes perform a very important function by carrying return current of the signal lines. Any discontinuities in the return current of the signal lines can cause SSN. Hence, to model SSN arising from the switching of I/O drivers, a good knowledge of the return path discontinuities is necessary. Placement of the capacitors at the return path discontinuities reduces SSN. In this section, the transmission line equations are derived along with a discussion, using two examples, on the importance of return currents.

1.8.1 Signal Lines as Transmission Lines

Signals cannot propagate faster than the speed of light. The velocity of 3 x 108 m/s in air is roughly equivalent to a time delay of 1 ns per foot of travel. In FR-4 (a common dielectric material used to fabricate PCB), a signal takes 1.66 ns to travel a distance of 10 inches. This delay can be an entire clock period behind and hence can slow down the system. Analyzing such signal lines using Kirchhoff's voltage and current laws neglect this time delay and can provide erroneous results. Early ICs involved transistor–transistor logic (TTL) devices with internal delays of 15 ns or more, limiting the clock rates to lower levels and making the transit time of the signals negligible in comparison. Modern devices have improved to the point that signal delays are the limiting factor in digital circuit design. Transmission line theory in which signal lines are analyzed as distributed circuits explicitly includes this time delay and therefore is applicable to these situations.

To better explain transmission line theory, consider a coaxial cable, as shown in 1-45(a), consisting of two conductors separated by a dielectric material. When current flows on the coaxial cable, there is a physical movement of charge carriers (electrons) down one conductor and back on the other. If there is a current flow into the inner conductor, then the return current flows in the opposite direction on the outer conductor. Because of this movement, the charge has some momentum, and the current therefore wants to keep moving once it has started. This effect is equivalent to some series inductance in the cable.

There is also some series resistance, since the metal is not a "perfect" conductor of electricity, and some of the electrical energy is therefore converted to heat as the current flows. At the same time, equal and opposite charge is stored instantaneously on the two conductors, giving rise to some shunt capacitance. If the material separating the conductors is not a perfect insulator, there will also be some leakage current from one conductor to another, which is the shunt conductance [32].

Although coaxial cables are excellent transmission lines, since the return current is always in close proximity to the forward current, it is difficult to use them in ICs, packages, and boards because of their three-dimensional structure. Hence, planar structures such as microstrip and striplines are used where the reference conductor is in the form of planes. The planes carry the return current, so it is important to locate the reference plane in close proximity to the signal conductor. An example of a microstrip line is shown in Figure 1-45(b).

Figure 1-45

Figure 1-45 (a) Coaxial cable. (b) Microstrip line.

Since the cross section of a transmission line is uniform and its length is much larger than its cross section, it can be described using the pul resistance (R), inductance (L), conductance (G), and capacitance (C) parameters. A small section of a transmission line can be represented using the equivalent circuit shown in Figure 1-46, where the pul parameters R, L, G, and C are each multiplied by the length Dz. The pul inductance L is the loop inductance between the signal line and the reference plane, where the forward current on the signal line returns in the opposite direction through the reference plane. The pul resistance R in Figure 1-46 is the sum total of the signal and reference plane resistance. The pul capacitance C and conductance G are measured between the singal and reference conductors.

Figure 1-46

Figure 1-46 Transmission-line equivalent circuit.

Applying Kirchoff's voltage and current laws to the circuit in Figure 1-46, the following two equations can be obtained:

Equation 1.49

073fig01.jpg

Under the limit Dz → 0, the transmission line equations can be written in the form

Equation 1.50

074equ01.jpg

Equation (1.50) can be extended to multiple coupled lines and form the multiconductor transmission line equations.

1.8.2 Relationship between Transmission-Line Parameters and SSN

Two important parameters that describe a transmission line are its characteristic impedance (Z0) and delay (T). For a lossless line (R = 0 and G = 0), these parameters are given by

Equation 1.51

074equ02.jpg

where l is the length of the transmission line. The SSN has an inverse relationship with Z 0, as described by equation (1.10). A transmission line with high characteristic impedance will always require less current to charge the line and hence a smaller dI/dt, which translates into lower SSN. A transmission line with low Z0 is capacitive and hence requires a larger current, resulting in larger SSN. Figure 1-47(a) shows the variation of the SSN as a function of tr/(L/Z0) based on equation (1.9). From the figure, for tr = 0.1 ns and L = 1 nH, a 50-W line will result in an SSN voltage of 0.2 V as compared to 0.1 V for a 100-W line.

Figure 1-47

Figure 1-47 (a) Variation of SSN. (b) Variation of 50% delay.

Noise on the power supply always results in an extra delay for the signal to rise to the required voltage in addition to the delay of the transmission line, as described by equations (1.12) and (1.13). Therefore, timing errors can occur when the SSN is large, which in turn is related to the Z0 of the transmission line. Figure 1-47(b) shows the variation of the 50% delay as a function of tr/(L/Z0) for a bus, based on equation (1.12) when tr is greater than L/Z0. From the figure, for tr = 0.1 ns and L = 1 nH, a 10 bit wide bus with impedance of 50 W will result in a delay of 0.191 ns as compared to 0.1235 ns for a bus with impedance of 100 W. Hence, choosing the right characteristic impedance for the signal lines becomes very important for minimizing SSN and timing error.

1.8.3 Relationship between SSN and Return Path Discontinuities

To illustrate the relationship between SSN and return path discontinuities for signal lines, two examples are discussed here. Figure 1-48(a) consists of a microstrip line over a voltage and ground plane. The signal line is referenced to the voltage plane, and the plane is continuous. A 1-A current source is applied between the input end of the signal line and the voltage plane that creates a forward current on the signal line, as shown in the figure. The return current flows on the voltage plane just beneath the signal line (at high frequencies), so the current loop is completed between the signal line and the voltage plane. This return current does not create any voltage disturbance between the voltage and ground plane, as illustrated in Figure 1-49(a), where a two-dimensional plot of the voltage fluctuation between the two planes is shown as a function of position, indicating that there is no change in the voltage across the planes. Any voltage measured between the two planes, as in Figure 1-48(a), will show no coupling between the signal line and voltage/ground plane.

Figure 1-48

Figure 1-48 (a) Microstrip line above voltage and ground plane. (b) Microstrip line above slot in voltage plane.

Figure 1-49

Figure 1-49 (a) Voltage disturbance on power/ground plane for ideal microstrip. (b) Voltage disturbance on power/ground plane for microstrip above slot.

Now consider a slot on the voltage plane beneath the signal line, as shown in Figure 1-48(b). With a 1-A current source excitation between the signal line and voltage plane, the forward current on the signal line causes a return current on the voltage plane. At the slot, the return current flows on the ground plane (due to the absence of metal on the voltage plane). Therefore, the current loop is completed by the vertical currents shown in Figure 1-48(b) (also called displacement currents) and is a return path discontinuity that excites the voltage/ground plane and causes a voltage disturbance. The voltage disturbance is shown in Figure 1-49(b) as a two-dimensional plot for a 250 mm by 250 mm plane with a 50-mm slot at the center. The excitation of the voltage/ground plane causes the f01 mode based on equation (1.29) at a frequency of about 750 MHz for a dielectric material with relative permittivity of 4.0 between the planes. Any voltage measured between the two planes, as in Figure 1-48(b), will now show singificant coupling between the signal line and voltage/ground plane. The return path discontinuity effect is discussed in more detail in Chapter 3.

A capacitor with a resonant frequency of 750 MHz placed between the voltage and ground planes near the slot will provide a low impedance path for the current to return on the planes and therefore will reduce the voltage disturbance on the planes.

In summary, SSN caused by the switching of signal lines in the package and board is caused by the return path discontinuities. For high-frequency system applications, the referencing of signal lines to planes is very important. The return path discontinuity for signal lines can be evaluated by following the return current path on the planes. Any discontinuity will manifest itself as voltage fluctuations between voltage and ground. It is important to note that the connection of the drivers and terminations to the signal lines can alter the power supply noise, since the current loop can change at the input and output, as described in Chapter 3.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020