Home > Articles > Engineering > Semiconductor Technologies

This chapter is from the book

1.2 Simple Relationships for Power Delivery

In any IC, two kinds of circuits need to be powered: the core and I/O. The core consists of transistors that are contained within an IC and that communicate with each other. The I/O, on the other hand, has to communicate with other ICs through the package and motherboard. Because the wires connected to I/O circuits exit the IC, they are very noisy and often are isolated from the core circuits using a separate PDN, as shown in Figure 1-8, where both the core and I/O circuits during switching create voltage fluctuations across the power supply. In this section, simple relationships are derived for the voltage fluctuations on a power supply for both the core and I/O circuits.

Figure 1-8

Figure 1-8 Core and I/O circuits. (Courtesy of Professor Joungho Kim KAIST, South Korea.)

1.2.1 Core Circuits

A very simple circuit is shown for the core circuits in Figure 1-9(a), where the driver and receiver circuits are shown as 2 and 1, respectively. The PDN contains some resistance and inductance due to the parasitics of the interconnections in the network. The resistance is assumed to be negligible here. A simple equivalent circuit for Figure 1-9(a) is shown in Figure 1-9(b). In the simplified equivalent circuit, the switch represents the PMOS transistor that closes at time t = 0. The resistance R is the on-resistance of the transistor, and C is the input capacitance of receiver circuit 1 that needs to be charged. The total inductance of the voltage and ground paths is represented by a single inductance L.

Figure 1-9

Figure 1-9 (a) Core circuits switching. (b) Equivalent circuit. (c) Simplified equivalent circuit.

The goal of the core PDN is to ensure that sufficient charge is supplied to the switching circuit so that the capacitance can be charged to the required voltage. To minimize delay, the charge has to be supplied within a short time. The circuit in Figure 1-9(b) has two time constants: L/R and RC. The delay of the transistor circuit is defined by the RC delay. Since the L/R time constant should have minimum impact on the RC delay of the transistor, it is desired that [2]

Equation 1.2

011equ01.jpg

Under this assumption, the simplified equivalent circuit in Figure 1-9(c) can be used, where the voltage drop across the inductor can be obtained by solving equation (1.3),

Equation 1.3

012equ01.jpg

where the current is obtained by solving the differential equation:

Equation 1.4

012equ02.jpg

In equation (1.4), v(t) is an equivalent source voltage with rise time tr (that combines the switch and Vdd) given by

Equation 1.5

012equ03.jpg

The rise time is dictated by the speed of the switch. The maximum voltage across the inductor occurs at time t = tr and is given by

Equation 1.6

012equ04.jpg

1.2.2 I/O Circuits

I/O circuits, unlike core circuits, drive off-chip interconnections. With increase in frequency, the interconnections behave as transmission lines where the delay becomes important. The PDN used to drive an I/O circuit is shown in Figure 1-11(a): the transmission line has a characteristic impedance of Z0 and delay T. The far end of the transmission line is terminated with a resistor R = Z0. The inductance L represents the PDN loop inductance from the power supply to the chip terminals. As before, the transistor is represented using a switch with an on-resistance R, where R is much less than Z0 to allow for the maximum voltage to be launched on the transmission line, as shown in Figure 1-11(b).

Figure 1-11

Figure 1-11 (a) I/O circuit switching. (b) Simple equivalent circuit. (c) Voltage drop across inductor.

When the switch closes, the power supply inductance L acts as an open circuit and behaves as a short circuit at time t = infinity. As in the previous section, the voltage source and the switch can be combined and represented as a pulse with rise time tr. Since the far end of the transmission line is terminated in the characteristic impedance of the transmission line, there are no reflections. The maximum voltage drop across the inductor occurs at time t = tr and can be calculated as in the previous section by replacing R with Z0:

Equation 1.9

014equ01.jpg

Based on equation (1.9), a signal line with low Z0 (highly capacitive) will always result in a larger voltage drop across the inductor, assuming the inductance is fixed, as described later in this chapter. When tr is much greater than L/Z0, the maximum voltage drop across the inductor simplifies to

Equation 1.10

014equ02.jpg

When N parallel transmission lines of characteristic impedance Z0 are switched simultaneously, it is equivalent to switching a single transmission line of impedance Z0/N. Hence, the maximum voltage drop across the inductor can be obtained by replacing Z0 by Z0/N in equations (1.9) and (1.10).

1.2.3 Delay Due to SSN

The presence of the inductor increases the delay of the I/O circuit. The voltage at the input end of the transmission line for a pulse with rise time tr can be computed as

Equation 1.12

015equ02.jpg

and

Equation 1.13

015equ03.jpg

where

Equation 1.14

015equ04.jpg

and v(tr) = v(t = tr) from equation (1.12). A transistor circuit at the receiver requires a minimum voltage at its input to switch states. Let's assume that the minimum voltage required for this to happen at the driver output Vchip (input end of the transmission line) is 0.5 x Vdd. Equations (1.12) and (1.13) can be used to calculate the time required to reach 0.5 x Vdd and hence represent the delay incurred because of the power supply inductance. Equation (1.12) can be used when tr is greater than L/Z0, and equation (1.13) can be used when tr is less than L/Z0 to calculate a 50% delay. This delay does not include the transmission line delay and is valid for a matched load, as in Figure 1-11(b).

1.2.4 Timing and Voltage Margin Due to SSN

Timing and voltage margins are affected by crosstalk, process variation, SSN, reflection, and other effects. In this section, we address only the effect of SSN. SSN can affect the voltage margin because power supply noise can corrupt the voltage levels of the signal waveform. In the previous section, a relationship was derived between the SSN and delay: as the SSN increased for a larger number of switching drivers, the 50% delay increased as well. This delay manifests itself as jitter that affects the signal integrity of the waveform and therefore increases the timing error; see Figure 1-11(e). As an example, consider an 8-bit-wide bus. If all the bits transition simultaneously from 0 to 1 (00000000 to 11111111 for the bus), the maximum transient current from the power supply is drawn, resulting in maximum noise and hence maximum delay. If only the alternate bits transition (00000000 to 10101010), fewer drivers switch and therefore the noise (and delay) is lower than in the previous case. For a pseudorandom bit stream (PRBS), the number of switching drivers changes at random, resulting in random SSN. Therefore, the 50% delay associated with the rising edge changes with the bit pattern, resulting in an uncertainty in the position of the rising edge. This effect is called jitter, shown in Figure 1-11(e). Jitter results in a timing uncertainty whereby a longer time interval may be required to latch the data for all the bit patterns if the jitter is large. Hence, the goal in I/O signaling is to ensure the smallest timing error by controlling jitter, which is possible by reducing SSN in addition to other parameters. This ensures a suitable timing margin. In Chapter 5, this effect is described in more detail through an example.

1.2.5 Relationship between Capacitor and Current

As mentioned earlier, decoupling capacitors serve as charge reservoirs and provide current to the switching circuits. Let's assume that the power supply inductance is small such that equation (1.10) is valid. Consider a single 50-W driver, which requires a current of 0.1 A assuming Vdd = 5 V (DI = 5/50). Let's assume that a 100-nF capacitor is available to provide charge to the switching circuits during a time interval of 10 ns (tr) that keeps the power supply fluctuations to within 10% of Vdd. The current that can be supplied by the capacitor that maintains Dv to be 10% of Vdd is given by [6]

Equation 1.15

017equ01.jpg

Since a single driver requires 0.1 A to charge the interconnections, the 100-nF capacitor can provide the current to 50 I/O circuits over a period of 10 ns.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020