Home > Store

IS-95 CDMA and cdma2000: Cellular/PCS Systems Implementation

Register your product to gain access to bonus material or receive a coupon.

IS-95 CDMA and cdma2000: Cellular/PCS Systems Implementation

Book

  • Sorry, this book is no longer in print.
Not for Sale

Description

  • Copyright 2000
  • Dimensions: 7" x 9-1/4"
  • Pages: 448
  • Edition: 1st
  • Book
  • ISBN-10: 0-13-087112-5
  • ISBN-13: 978-0-13-087112-1

The Next Generation: Wireless Communications for Multimedia and Beyond

Of all wireless technologies for personal communications, Code Division Multiple Access (CDMA) offers the best combination of good signal quality, high security, low power consumption, and excellent system reliability. Features added in the IS-95 standard means this impressive list now also includes Third Generation (3G) data capabilities that will allow CDMA providers to offer Internet and intranet services for multimedia applications, high-speed business transactions, and telemetry. The upcoming cdma2000 standard will further expand usable bandwidth without sacrificing voice quality or requiring additional spectrum.

In this book by an experienced telecommunications authority, you will learn how to maximize the power of CDMA, migrate existing systems to the newest standards, and prepare for a smooth transition to features yet to come. IS-95 CDMA and cdma2000: Cellular/PCS Systems Implementation covers all aspects of up-to-date CDMA implementation and operation, including:

  • Coding and architecture
  • Radio interface and call flow
  • Physical, data link, and signaling layers
  • Handoff and power control
  • System security
  • Wireless Data
  • Reverse and Forward Link Capacity
  • RF Engineering and network planning
  • Evolution to Third Generation systems

Practicing engineers and their managers will benefit from the in-depth coverage of IS-95 systems, RF engineering, and capacity planning. Students will appreciate the forward-looking approach that offers a look at the future of the industry where they are preparing for careers. IS-95 CDMA and cdma2000: Cellular/PCS Systems Implementation offers both practical applications information and conveniently organized reference materials for anyone interested in the next generation of wireless telecommunications.

Sample Content

Table of Contents



1. Introduction to Access Technologies.

Introduction. Major Attributes of CDMA Systems. Third-Generation Systems. Multiple Access Technologies. Modes of Operation in Wireless Communications. Summary. References.



2. Direct Sequence Spread Spectrum and Spreading Codes.

Introduction. Types of Techniques Used for Spread Spectrum. The Concept of Spread Spectrum System. The Performance of DSSS. Bit Scrambling. The Performance of a CDMA System. Pseudorandom Noise Sequences. Summary. Problems. References.



3. Speech and Channel Coding.

Introduction. Speech Coding. Channel Coding. Summary. Problems. References.



4. Diversity, Combining, and Antennas.

Introduction. Diversity Reception. Types of Diversity. Basic Combining Methods. BPSK Modulation and Diversity. Examples of Base Station and Mobile Antennas. Summary. References.



5. IS-95 System Architecture.

Introduction. TR-45/TR-46 Reference Model. Functional Model Based on Reference Model. Wireless Intelligent Network. Summary. References.



6. IS-95 CDMA Air Interface.

Introduction. TIA IS-95 CDMA System. Summary. References.



7. Physical and Logical Channels of IS-95 CDMA.

Introduction. Physical Channels. Modulation. Bit Repetition. Block Interleaving. Channel Coding. Logical Channels. Summary. References.



8. IS-95 CDMA Call Processing.

Introduction. CDMA Call Processing State. CDMA Registration. Authentication. Summary. References.



9. Signaling Applications in IS-95 CDMA.

Introduction. Layered Structure. A-Interface. Roaming. Summary. References.



10. Soft Handoff and Power Control in IS-95 CDMA.

Introduction. Types of Handoff. Pilot Sets. Search Windows. Handoff Parameters. Handoff Messages. Handoff Procedures. Setup and End of Soft Handoff. Maintenance of Pilot Sets. The Need for Power Control. Reverse Link Power Control. Forward Link Power Control. Summary. References.



11. Security and Identification in IS-95 CDMA.

Introduction. Mobile Identification Parameters. Authentication Procedures. Shared Secret Data. Parameter Update. Voice Privacy. Summary. References.



12. RF Engineering and Network Planning.

Introduction. Radio Design for a Cellular/PCS Network. Radio Network Planning. Radio Link Design. Estimation of Cell Count. Radio Coverage Planning. Propagation Models. Delay Spread. Doppler Spread. Intersymbol Interference. Link Budget and Cell Coverage. Dual-Mode CDMA Mobiles. The Transition from an Analog System to a Digital System. Facilities Engineering. Design Considerations at the Boundary of a CDMA System. Interfrequency Handoff. Summary. References.



13. Reverse and Forward Link Capacity of IS-95 CDMA System.

Introduction. Reverse Link Capacity. Multicell Network. Intercell Interference. Erlang Capacity of a Single Cell. Forward Link Capacity. CDMA Cell Size. Forward and Reverse Link Balance. Forward Link Budget. Summary. References. Problems.



14. Wireless Data.

Introduction. Data Communication Services. OSI Upper Layers. Wireless Data Systems. WLAN Standards. Access Methods. Error Control Schemes. Data Services in IS-. Asynchronous Data and Group-3 Facsimile. Short Message Service. Packet Data Services for CDMA Cellular/PCS Systems. Summary. References.



15. cdma2000 System.

Introduction. cdma2000 Layering Structure. cdma2000 Channels. Logical Channels Used by PLICF. Physical Layer. Forward Link Physical Channels. Forward Link Features. Reverse Physical Channels. Data Services in cdma. Mapping of Logical Channels to Physical Channels. Evolution of cdmaOne (IS-95) to cdma. Major Technical Differences between cdma2000 and W-CDMA. Summary. References. A-Traffic Tables. B-Abbreviations. C-Additional References



Index.


About the Author

Preface

Preface

The global mobile communications market is booming. There are almost 250 million users worldwide and should be nearly 1 billion by early next century. Code Division Multiple Access (CDMA) is the fastest-growing digital wireless technology, tripling its worldwide subscriber base between 1997 and 1998. There are already 30 million CDMA customers and, at the current growth rate, there will be 50 million by the millennium. The major markets for CDMA are North America, Latin America, and Asia (particularly Japan and Korea). In total, CDMA has been adopted by almost 50 countries around the world.

It is not hard to see the reasons for the success of CDMA. CDMA is an advanced digital technology that can offer about 7 to10 times the capacity of analog technologies and up to 6 times the capacity of digital technologies such as Time Division Multiple Access (TDMA). The speech quality provided by CDMA systems is far superior to any other digital cellular technology, particularly in difficult radio environments such as dense urban areas and mountainous regions. In both initial deployment and long-term operation, CDMA provides the most cost-effective solution for cellular operators. After an 18-month of market rollout, Personal Communications Services (PCS) providers have adequately demonstrated the power of CDMA technology to support a marketing strategy based on low prices and superior performance in key areas such as voice quality, system reliability, and handset battery life.

CDMA service providers have a strong advantage when pursuing the market to the minutes-of-use model, given the longevity of CDMA handset battery life and the higher quality of the voice signal. A recent analysis of wireless platform performance by the Telecommunications Research and Action Center (TRAC) found that CDMA outperformed other digital and analog technologies on every front, including signal quality, security, power consumption, and reliability. Although analog technology came out ahead in availability, all three digital services (GSM, IS-136 TDMA, and IS-95 CDMA) were rated equally over analog with respect to availability of enhanced service features. The TRAC study found CDMA to be superior in signal security and voice quality over the other digital air interface standards. According to TRAC, CDMA has several advantages for consumers. Lower power consumption enables CDMA handsets to support up to 4 hours of talk time or 48 hours of standby time on a single battery charge. It has also been found that the soft-handoff characteristics of CDMA lead to fewer dropped calls than with GSM and IS-136 TDMA. One possible drawback for some CDMA customers is that there are some limitations on roaming capabilities. Some PCS operators with cellular affiliates are supporting dual-mode handsets to allow roaming between CDMA and analog platforms.

CDMA technology is constantly evolving to offer customers new, advanced services. The mobile data speeds offered through CDMA phones are increasing, and new voice codecs provide speech quality close to wireline. Internet access is now available through CDMA terminals. The time will soon be at hand when CDMA service providers can further exploit the enhanced service potential of their platforms. There has been much talk of so-called third-generation (3G) data capabilities, where PCS providers will be able to compete with wireline service providers at high access speeds. PCS providers are looking ahead toward providing a range of service categories such as Internet and intranet access, multimedia applications, highspeed business transactions, and telemetry. The CDMA network offers operators a smooth evolutionary path to 3G mobile systems.

The IS-95B standard is quite flexible, enabling service providers to allocate data in increments of 8 kilobits per second (kbps) within the 1.25-megahertz (MHz) CDMA channel bandwidth based on how service providers configure software download to already-installed network controllers. This means operators can implement return data speeds at rates much lower than 64 kbps, ensuring much lower power consumption in handsets than would be the case at a full 64kbps return rate. While operators in GSM and IS-136 TDMA sectors are making efforts to ensure they won't be left behind as data becomes a factor, CDMA appears to have a clear edge in its ability to go to relatively high speeds over the existing infrastructure.

The opportunity to use the CDMA platform to add a fixed wireless service feature represents an added advantage for operators. Because CDMA has ample spectrum to provide a fixed service on top of mobile, several operators are exploring using terminals that would be able to shift the handset between fixed and mobile service, depending on where the user is. The universal handset would serve as a cordless phone in the home and as a mobile handset outside the home. The evolution to 3G will open the wireless local loop (WLL) with Public-Switched Telephone Network (PSTN) and Public Data Network (PDN) access, while providing more convenient control of applications and network resources. It will also open the door to convenient global roaming, service portability, zone-based ID and billing, and global directory access. The 3G technology is even expected to support seamless satellite interworking.

With the cornucopia of benefits surrounding CDMA, it is evident that operators using this platform will have every opportunity to grow the business once the community-based strategy begins to unfold. The question is, when will they get serious about bringing these new capabilities to market?

Recently an enhanced hybrid technology combining the CDMA air interface with the GSM network has been built, tested, and evaluated. GSM operators can save over 60% in cumulative capital costs using a GSM-CDMA overlay for network expansion of the GSM network using IS-95 CDMA radio access in addition to, or as a substitute for, TDMA radio access. This combines the spectral efficiency of CDMA with all GSM features, including seamless roaming and network services. The GSM-CDMA technology provides operators with a way to serve multiple market segments economically and to offer various services on one network platform. In addition to being a cost-effective network expansion solution, GSMCDMA also paves an evolutionary path to 3G services including high-speed data, multimedia, and mobile/fixed convergence services.

CDMA is the selected approach for the 3G system, as evidenced by the proposals submitted by the European Telecommunications Standards Institute (ETSI), the Association Radio Industry Business CARIB), and the Telecommunications Industry Association (TIA). The 3G cdma2000 uses a CDMA air interface based on the existing IS-95B standard to provide wireline-quality voice service and high-speed data services, ranging from 144 kbps for mobile users to 2 megabits per second (Mbps) for stationary users. It is important to note that cdma2000 is a core proposal of the TIA for International Mobile Telecommunications-2000 (IMT 2000). Moreover, support for cdma2000 is not limited to North America; Korean carriers have a great opportunity to provide 3G-like service with today's existing CDMA technology. Mobile data rates of up to 114 kbps and fixed peak rates beyond 1.5 Mbps are within reach before the end of the decade with today's CDMA technology. These capabilities will be provided without degrading the systems' voice transmission capabilities or requiring additional spectrum. This will have tremendous implications for the majority of operators that are spectrum constrained. A doubling of capacity and a 1.5-Mbps data rate capability within a 1.25-MHz channel structure look very appealing.

This book is an extension of the book Applications of CDMA in Wireless Communications (Garg, Smolik, and Wilkes, Prentice Hall, 1997). In that book, the primary focus was on the CDMA systems standardized by TIA and American Telecommunications Industries Standards (ATIS) as standards IS-95 and IS-665. Since the publication of that book, CDMA technology has undergone major changes and has become a viable technology for 3G systems. In this book, I discuss those aspects of CDMA that are essential to understanding system capacity. I also provide guidelines for system parameters of a CDMA network. The book outlines a migration path for CDMA to a 3G cdma2000 system.

In writing this book, I addressed the needs of practicing engineers and engineering managers by explaining CDMA concepts, system capacity, radio frequency (RF) engineering, and other important aspects of the CDMA network. Students studying courses in telecommunications will also find this book useful as they prepare for careers in the wireless industry. I included a sufficient amount of mathematics so that you can understand the operation of the CDMA network, but I tried not to overwhelm you with very complex mathematical derivations.

This book can be used by practicing telecommunications engineers involved in the design and operation of CDMA-based cellular/PCS networks as well as by senior or graduate students in electrical engineering, telecommunications engineering, and computer engineering curricula. I assume that you have some basic background in mobile communications and CDMA technology. If you don't, the book mentioned above by Garg, Smolik, and Wilkes can provide that understanding. By selectively reading pertinent chapters of that book, telecommunications managers who are engaged in managing CDMA networks but who have little or no technical background can gain enough of an understanding of CDMA systems to read this book.

This book can be divided into four segments: Chapters 1 through 4 provide a foundation for understanding the material in subsequent chapters. Chapters 5 through 11 deal with IS-95 CDMA standards, and chapters 12 and 13 provide design aspects of a CDMA system. Chapters 14 and 15 focus on the data applications in CDMA and the evolution of IS-95 (2G system) to cdma2000 (3G system) in order to satisfy ITU IMT-2000 specifications. The following is a synopsis of the subjects covered in each chapter.

  • Chapter 1. Major attributes of CDMA and the access technologies used for cellular/ PCS systems.
  • Chapter 2. The different types of Spread Spectrum (SS) systems that are used. The main focus is on the Direct Sequence Spread Spectrum (DSSS) techniques that are employed in CDMA. I provide a relationship to calculate the performance of a CDMA system.
  • Chapter 3. Speech and channel coding applications in the IS-95 CDMA system.
  • Chapter 4. The concepts of diversity reception used to improve signal-to-noise ratio (SNR) of the system; various combining schemes used to combine the signals; some practical antennas used in the cellular telephone industry.
  • Chapter 5. Functional entities of the wireless network and the TIA-standardized interfaces between the entities. I examine the activities of the International Telecommunication Union (ITU) to add Intelligent Network (IN) to wireless systems.
  • Chapter 6. A high-level description of the IS-95 CDMA air interface, including important aspects of the forward link (base station to mobile) and reverse link (mobile to base station) and modulation parameters for the channels.
  • Chapter 7. Modulation schemes, bit repetition, block interleaving, and channel coding; these are used in processing logical channels on the IS-95 CDMA forward and reverse links. Details about information processing, message types, and message framing are presented for the pilot, sync, paging, and traffic channels on the forward link. Similar details are provided for the access and traffic channels on the reverse link.
  • Chapter 8. IS-95 CDMA call processing states that a mobile station (MS) goes through in getting to a traffic channel; idle handoff, slotted paging operation, CDMA registration, and authentication procedures; call flows for CDMA call origination, call termination, call release, and authentication.
  • Chapter 9. The layering concept used to develop the protocols for IS-95 CDMA; the standardized interfaces between the functional entities, mainly the A-Interface and TIA IS-634defined MSC-BS messages, message sequencing, and mandatory timers at the BS and the MSC. The chapter also provides call flow diagrams for typical supplementary services, handoff scenarios, and Over-The-Air Service Provisioning (OTASP).
  • Chapter 10. Handoff strategy used in IS-95 CDMA; power control schemes for the reverse and forward links.
  • Chapter 11. Various parameters used to identify an MS including International Mobile Station Identity (IMSI), Mobile Station Number (MDN), Electronic Serial Number (ESN), and station class mark. I focus on authentication procedures, including the authentication of MS registration, MS originations, MS terminations, MS data bursts, and Temporary Mobile Station Identity (TMSI) assignment. Also discussed are unique challenge response procedures.
  • Chapter 12. Basic guidelines for engineering a CDMA system, including a discussion of propagation models, link budgets, the transition from analog operation to CDMA operation, radio link capacity, facility engineering, border cells on a boundary between two service providers, and interfrequency handoff.
  • Chapter 13. Procedures for calculating the capacity of the reverse and forward link of a CDMA system; a procedure to develop a link safety margin parameter for each of the forward link channels.
  • Chapter 14. Standards for data services supported by CDMA cellular/PCS systems; highlights of the TIA IS-99, TIA IS-637, and TIA IS-657 standards. I describe the architecture for each of the four data services (e.g., packet data, asynchronous data, facsimile, and short message services) and the protocol stacks supported by these services.
  • Chapter 15. The cdma2000, 3G evolution of IS-95. The cdma2000 Radio Transmission Technology (RTT) is a wideband, SS radio interface that uses CDMA technology to satisfy the needs of 3G wireless communication systems.

Appendix A presents traffic tables for a variety of blocking probabilities and channel numbers. Appendix B comprises a list of abbreviations I introduce in the text and that are common to the industry. The references cited in Appendix C are papers and texts that I have found useful and, when considered in addition to those cited in the text, provide a rich background for readers interested in looking into digital wireless technology in greater depth.

I suggest chapters 1-11 for those who are interested in IS-95 standards but who do not have much background in digital communications. Those who have adequate background in digital communications may skip chapters 1-4.

I recommend chapters 1, 2, 4-10, 12, and 13 for those who are involved with the design of a CDMA system. The engineering managers should use chapters 1 and 5-12 to achieve adequate knowledge of IS-95 CDMA.

I suggest chapters 1-8, 10-12, 13, and 15 for a one-semester graduate course in IS-95 CDMA and its evolution to cdma2000.

I would like to thank the many people who helped me prepare the material in this book. Bernard Goodwin provided his encouragement in motivating me to write the book. Professor Ted Rappaport of Virginia Tech took me under the banner of his new series. I acknowledge the many helpful suggestions I received from my many friends.

Finally, I acknowledge the assistance of my wife, Pushpa Garg, and the staff of BooksCraft, Inc. during the production of this book.

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020