Home > Articles

Introduction

This chapter is from the book

1.3 Process Models and Dynamic Behavior

Thus far we have mentioned the term model a number of times, and you probably have a vague notion of what we mean. The following definition of a model is from the McGraw-Hill Dictionary of Scientific and Technical Terms:

A mathematical or physical system, obeying certain specified conditions, whose behavior is used to understand a physical, biological, or social system to which it is analogous in some way.

In this textbook, model is taken to mean mathematical model. More specifically, we develop process models. A working definition of process model is

A set of equations (including the necessary input data to solve the equations) that allows us to predict the behavior of a chemical process.

Models play a very important role in control-system design. Models can be used to simulate expected process behavior with a proposed control system. Also, models are often embedded in the controller itself; in effect, the controller can use a process model to anticipate the effect of a control action. We can see from Example 1.1 that we at least need to know whether an increase in the flow rate will increase or decrease the tank level. For example, an increase in the inlet flow rate increases the tank level (positive gain), whereas an increase in the outlet flow rate decreases the tank level (negative gain). In order to design a controller, then, we need to know whether an increase in the manipulated input increases or decreases the process output variable; that is, we need to know whether the process gain is positive or negative.

An example of a process model is shown next. A number of other examples are developed in Chapter 2, “Fundamental Models.”

Example 1.3: Liquid Surge Vessel Model

In the development of a dynamic model, simplifying assumptions are often made. Also, the model requirements are a function of the end-use of the model. In this case, we are ultimately interested in designing a controller and in simulating control-system behavior. Because we have not covered control algorithms in depth, our objective here is to develop a model that relates the inputs (manipulated and disturbance) to measured outputs that we wish to regulate.

For this process, we first assume that the density is constant. The model we develop should allow us to determine how the volume of liquid in the vessel varies as a function of the inlet and outlet flow rates. We list the state variables, parameters, and the input and output variables. We must also specify the required information to solve this problem (see Figure 1–2). The system is the liquid in the tank, and the liquid surface is the top boundary of the system. The following notation is used in the modeling equations:

Here we write the balance equations based on an instantaneous rate of change,

where the total mass of fluid in the vessel is Vρ, the rate of change is dVρ/dt, and the density of the outlet stream is equal to the density of the vessel contents:

Notice the implicit assumption that the density of fluid in the vessel does not depend on position (the perfect mixing assumption). This assumption allows an ordinary differential equation (ODE) formulation. We refer to any system that can be modeled by ODEs as lumped parameter systems. Also notice that the outlet stream density was assumed to be equal to the density of fluid in the tank. Assuming that the density of the inlet stream and fluid in the vessel are equal, this equation is then reduced to1

In Equation (1.3), we refer to V as a state variable and to i-f1.jpg and i-f2.jpg as input variables (even though i-f2.jpg is an outlet stream flow rate). If density remained in the equation, we would refer to it as a parameter.

To solve this problem, we must specify the inputs i-f1t.jpg and i-f2t.jpg and the initial condition V(0). Direct integration of Equation (1.3) yields

If, for example, the initial volume is 500 liters, the inlet flow rate is 5 liters/second and the outlet flow rate is 4.5 liters/second, we find

ch01equ01.jpg

Example 1.3 provides an introduction to the notion of states, inputs, and parameters. Consider now the notion of an output. We may consider fluid volume to be a desired output that we wish to control, for example. In that case, volume would not only be a state, it would also be considered an output. On the other hand, we may be concerned about fluid height rather than volume. Volume and height are related through the constant cross-sectional area, A:

Then we have the following modeling equations:

whereVis a state, i-f1.jpg and i-f2.jpg are inputs, h is an output, and A is a parameter. We could also rewrite the state variable equation to find

ch01equ02.jpg

or

where fluid height is now the state variable. It should also be noted that inputs can be classified as either manipulated inputs (that we may regulate with a control valve, for example) or disturbance inputs. If we wanted to measure fluid height and manipulate the flow rate of stream 1, for example, then i-f1.jpg would be a manipulated input, while i-f2.jpg would be a disturbance input.

We have found that a single process can have different modeling equations and variables, depending on assumptions and the objectives used when developing the model.

The liquid level process is an example of an integrating process. If the process is at a steady state, the inlet and outlet flow rates are equal (see Equation 1.3 or 1.7). If the inlet flow rate is suddenly increased while the outlet flow rate remains constant, the liquid level (volume) will increase until the vessel overflows. Similarly, if the outlet flow rate is increased while the inlet flow rate remains constant, the tank level will decrease until the vessel is empty.

In this book, we first develop process models based on fundamental or first-principles analysis, that is, models that are based on known physical–chemical relationships, such as material and energy balances, as well as reaction kinetics, transport phenomena, and thermodynamic relationships. We then develop empirical models. An empirical model is usually developed on the basis of applying input changes to a process and observing the response of measured outputs. Model parameters are adjusted so that the model outputs match the observed process outputs. This technique is particularly useful for developing models that can be used for controller design.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020