Home > Store

Spoken Language Processing: A Guide to Theory, Algorithm and System Development

Register your product to gain access to bonus material or receive a coupon.

Spoken Language Processing: A Guide to Theory, Algorithm and System Development

Book

  • Sorry, this book is no longer in print.
Not for Sale

Description

  • Copyright 2001
  • Dimensions: 7" x 9-1/4"
  • Pages: 1008
  • Edition: 1st
  • Book
  • ISBN-10: 0-13-022616-5
  • ISBN-13: 978-0-13-022616-7

  • New advances in spoken language processing: theory and practice
  • In-depth coverage of speech processing, speech recognition, speech synthesis, spoken language understanding, and speech interface design
  • Many case studies from state-of-the-art systems, including examples from Microsoft's advanced research labs

Spoken Language Processing draws on the latest advances and techniques from multiple fields: computer science, electrical engineering, acoustics, linguistics, mathematics, psychology, and beyond. Starting with the fundamentals, it presents all this and more:

  • Essential background on speech production and perception, probability and information theory, and pattern recognition
  • Extracting information from the speech signal: useful representations and practical compression solutions
  • Modern speech recognition techniques: hidden Markov models, acoustic and language modeling, improving resistance to environmental noises, search algorithms, and large vocabulary speech recognition
  • Text-to-speech: analyzing documents, pitch and duration controls; trainable synthesis, and more
  • Spoken language understanding: dialog management, spoken language applications, and multimodal interfaces

To illustrate the book's methods, the authors present detailed case studies based on state-of-the-art systems, including Microsoft's Whisper speech recognizer, Whistler text-to-speech system, Dr. Who dialog system, and the MiPad handheld device. Whether you're planning, designing, building, or purchasing spoken language technology, this is the state of the art—from algorithms through business productivity.

Sample Content

Table of Contents

(NOTE: Each chapter ends with Historical Perspective and Further Reading.)

1. Introduction.

Motivations. Spoken Language System Architecture. Book Organization. Target Audiences.

I. FUNDAMENTAL THEORY.

2. Spoken language Structure.

Sound and Human Speech Systems. Phonetics and Phonology. Syllables and Words. Syntax and Semantics.

3. Probability, Statistics, and Information Theory.

Probability Theory. Estimation Theory. Significance Testing. Information Theory.

4. Pattern Recognition.

Bayes' Decision Theory. How to Construct Classifiers. Discriminative Training. Unsupervised Estimation Methods. Classification and Regression Trees.

II. SPEECH PROCESSING.

5. Digital Signal Processing.

Digital Signals and Systems. Continuous-Frequency Transforms. Discrete-Frequency Transforms. Digital Filters and Windows. Digital Processing of Analog Signals. Multirate Signal Processing. Filterbanks. Stochastic Processes.

6. Speech Signal Representations.

Short-Time Fourier Analysis. Acoustical Model of Speech Production. Linear Predictive Coding. Cepstral Processing. Perceptually Motivated Representations. Formant Frequencies. The Role of Pitch.

7. Speech Coding.

Speech Coders Attributes. Scalar Waveform Coders. Scalar Frequency Domain Coders. Code Excited Linear Prediction (CELP). Low-Brit Speech Coders.

III. SPEECH RECOGNITION.

8. Hidden Markov Models.

The Markov Chain. Definition of the Hidden Markov Model. Continuous and Semicontinuous HMMs. Practical Issues in Using HMMs. HMM Limitations.

9. Acoustic Modeling.

Variability in the Speech Signal. How to Measure Speech Recognition Errors. Signal Processing—Extracting Features. Phonectic Modeling—Selecting Appropriate Units. Acoustic Modeling—Scoring Acoustic Features. Adaptive Techniques—Minimizing Mismatches. Confidence Measures: Measuring the Reliability. Other Techniques. Case Study: Whisper.

10. Environmental Robustness.

The Acoustical Environment. Acoustical Transducers. Adaptive Echo Cancellation (AEC). Multimicrophone Speech Enhancement. Environment Compensation Preprocessing. Environment Model Adaptation. Modeling Nonstationary Noise.

11. Language Modeling.

Formal Language Theory. Stochastic Language Models. Complexity Measure of Language Models. N-Gram Smoothing. Adaptive Language Models. Practical Issues.

12. Basic Search Algorithms.

Basic Search Algorithms. Search Algorithms for Speech Recognition. Language Model States. Time-Synchronous Viterbi Beam Search. Stack Decoding (A Search).

13. Large-Vocabulary Search Algorithms.

Efficient Manipulation of a Tree Lexicon. Other Efficient Search Techniques. N-Best and Multipass Search Strategies. Search-Algorithm Evaluation. Case Study—Microsoft Whisper.

IV. TEXT-TO-SPEECH SYSTEMS.

14. Text and Phonetic Analysis.

Modules and Data Flow. Lexicon. Document Structured Detection. Text Normalization. Linguistic Analysis. Homograph Disambiguation. Morphological Analysis. Letter-to-Sound Conversion. Evaluation. Case Study: Festival.

15. Prosody.

The Role of Understanding. Prosody Generation Schematic. Speaking Style. Symbolic Prosody. Duration Assignment. Pitch Generation. Prosody Markup Languages. Prosody Evaluation.

16. Speech Synthesis.

Attributes of Speech Synthesis. Formant Speech Synthesis. Concatenative Speech Synthesis. Prosodic Modification of Speech. Source-Filter Models for Prosody Modification. Evaluation of TTS Systems.

V. SPOKEN LANGUAGE SYSTEMS.

17. Spoken Language Understanding.

Written vs. Spoken Languages. Dialog Structure. Semantic Representation. Sentence Interpretation. Discourse Analysis. Dialog Management. Response Generation and Rendition. Evaluation. Case Study—Dr. Who.

18. Applications and User Interfaces.

Application Architecture. Typical Applications. Speech Interface Design. Internationalization. Case Study—MIPAD.

Index.

Preface

Preface

Our primary motivation in writing this book is to share our working experience to bridge the gap between the knowledge of industry gurus and newcomers to the spoken language processing community. Many powerful techniques hide in conference proceedings and academic papers for years before becoming widely recognized by the research community or the industry. We spent many years pursuing spoken language technology research at Carnegie Mellon University before we started spoken language R&D at Microsoft. We fully understand that it is by no means a small undertaking to transfer a state-of-the-art spoken language research system into a commercially viable product that can truly help people improve their productivity. Our experience in both industry and academia is reflected in the context of this book, which presents a contemporary and comprehensive description of both theoretic and practical issues in spoken language processing. This book is intended for people of diverse academic and practical backgrounds. Speech scientists, computer scientists, linguists, engineers, physicists, and psychologists all have a unique perspective on spoken language processing. This book will be useful to all of these special interest groups.

Spoken language processing is a diverse subject that relies on knowledge of many levels, including acoustics, phonology, phonetics, linguistics, semantics, pragmatics, and discourse. The diverse nature of spoken language processing requires knowledge in computer science, electrical engineering, mathematics, syntax, and psychology. There are a number of excellent books on the subfields of spoken language processing, including speech recognition, text-to-speech conversion, and spoken language understanding, but there is no single book that covers both theoretical and practical aspects of these subfields and spoken language interface design. We devote many chapters systematically introducing fundamental theories needed to understand how speech recognition, text-to-speech synthesis, and spoken language understanding work. Even more important is the fact that the book highlights what works well in practice, which is invaluable if you want to build a practical speech recognizer, a practical text-to-speech synthesizer, or a practical spoken language system. Using numerous real examples in developing Microsoft's spoken language systems, we concentrate on showing how the fundamental theories can be applied to solve real problems in spoken language processing.

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020