SKIP THE SHIPPING
Use code NOSHIP during checkout to save 40% on eligible eBooks, now through January 5. Shop now.
Register your product to gain access to bonus material or receive a coupon.
This eBook includes the following formats, accessible from your Account page after purchase:
EPUB The open industry format known for its reflowable content and usability on supported mobile devices.
PDF The popular standard, used most often with the free Acrobat® Reader® software.
This eBook requires no passwords or activation to read. We customize your eBook by discreetly watermarking it with your name, making it uniquely yours.
Students will:
Microsoft Excel can perform many statistical analyses, but thousands of business users and analysts are now reaching its limits. R, in contrast, can perform virtually any imaginable analysis—if you can get over its learning curve. In R for Microsoft® Excel Users, Conrad Carlberg shows exactly how to get the most from both programs.
Drawing on his immense experience helping organizations apply statistical methods, Carlberg reviews how to perform key tasks in Excel, and then guides you through reaching the same outcome in R—including which packages to install and how to access them. Carlberg offers expert advice on when and how to use Excel, when and how to use R instead, and the strengths and weaknesses of each tool.
Writing in clear, understandable English, Carlberg combines essential statistical theory with hands-on examples reflecting real-world challenges. By the time you’ve finished, you’ll be comfortable using R to solve a wide spectrum of problems—including many you just couldn’t handle with Excel.
• Smoothly transition to R and its radically different user interface
• Leverage the R community’s immense library of packages
• Efficiently move data between Excel and R
• Use R’s DescTools for descriptive statistics, including bivariate analyses
• Perform regression analysis and statistical inference in R and Excel
• Analyze variance and covariance, including single-factor and factorial ANOVA
• Use R’s mlogit package and glm function for Solver-style logistic regression
• Analyze time series and principal components with R and Excel
Download supporting files for this book:
• Chapter 1 (227 KB .xlsx)
• Chapter 2 (611 KB .xlsx)
• Chapter 3 (321 KB .xlsx)
• Chapter 4 (371 KB .xlsx)
• Chapter 5 (138 KB .xlsx)
• Chapter 6 (57 KB .xlsx)
• PCA (57 KB .xlsm)