Home > Store

Photodetectors: Devices, Circuits and Applications

Register your product to gain access to bonus material or receive a coupon.

Photodetectors: Devices, Circuits and Applications

Book

  • This product currently is not for sale.
Not for Sale

Description

  • Copyright 2000
  • Dimensions: 7" x 9-1/4"
  • Pages: 448
  • Edition: 1st
  • Book
  • ISBN-10: 0-13-020337-8
  • ISBN-13: 978-0-13-020337-3


2033G-2

The complete guide to photodetection

Today's optoelectronic devices rely on accurate detection of light sources across the spectrum. This comprehensive guide surveys single-point devices and their image counterparts covering the range from UV to far IR. Basic operations, performance parameters, and special features are presented in the context of application circuits. Special attention is given to issues of sensitivity and noise limits. The devices surveyed include:

  • Photomultipliers
  • Semiconductors, photodiodes, avalanche devices, and phototransistors
  • Thermal devices and solar cells
  • Image detectors and CCDs

Concluding chapters deal with coherent detection and advanced techniques, while appendices offer convenient reference materials for key principles. Photodetectors: Devices, Circuits, and Applications is a useful reference for working engineers and an ideal sourcebook for university-level courses.

Sample Content

Table of Contents



1. INTRODUCTION.


2. PHOTOCATHODES.

The Photoemission Process. Photoemission and Quantum Efficiency. Material Requirements, Surface and NEA Effects. Properties of Common Photocathodes. Photocathode Technology. Photocathodes Parameters. Phototubes. References.



3. DETECTION REGIMES AND FIGURES OF MERIT.

The Bandwidth-Noise Tradeoff. Quantum and Thermal Regimes. Figures of Merit of Detectors. References.



4. PHOTOMULTIPLIERS.

Dynode Multiplication. The Electron Optics. Common Photomultiplier Structures. Photomultiplier Response, Gain, and Noise. Special Photomultiplier Structures. Photomultiplier Performances. Applications of Photomultipliers. Microchannels and MCP Photomultipliers. References.



5. SEMICONDUCTOR PHOTODETECTORS.

Introduction and Nomenclature. Junction Photodiodes. Photodiode Circuits. Avalanche Photodiode. Phototransistors and Other Semiconductor (FET,MOS) Photodevices. Photoconductors. References.



6. THERMAL DETECTORS AND THERMOGRAPHY.

Types of Thermal Detectors. Detectivity of Thermal Detectors. Temperature Measurements and NEDT. Thermography and Applications. References.



7. SOLAR CELLS.

Electrical Parameters. Solar Spectrum and Maximum Efficiency. System Efficiency. Solar Cell Structures and Materials. Photovoltaic Systems. References.



8. PHOTODETECTION TECHNIQUES.

Direct and Coherent Detection. The Balanced Detector. Detection with Optical Preamplification. Injection Detection. Non-Demolitive Detection. Detection of Squeezed-State Radiation. New Model of Noise in Photodetection. References.



9. IMAGE DETECTORS.

Image Pickup Tubes. Charge-Coupled Devices. Spatial Resolution and MTF. Image Converters and Intensifiers. References.



Appendix A:1 SPECTRAL RANGES AND MEASUREMENT UNITS.

Nomenclature. Transmission of Natural Media. Radiometric and Photometric Units. Attenuation Units. Blackbody Radiance. Luminous and Radiant Sensitivity.



Appendix A:2 THE INVARIANTS OF RADIOMETRY.

The Law of Photography. The Invariance in Free Propagation. Degrees of Freedom. Examples of Application. Extension of the Invariants.



Appendix A:3 EYE PERFORMANCE.

Visual Acuity. Chromatic Perception.



Appendix A:4 NOISE REVISITED.

Shot Noise. Noise in Resistors. Noise from Statistical Thermodynamics.



Appendix A:5 COMPLEMENTARY INFORMATION FOR JUNCTION PHOTODIODES.

Intrinsic Speed of Response. Series Resistance. Calculations for the Transimpedance Circuit. The Transimpedance Scheme at High Frequencies. Edge Effects and Guard Ring.



Appendix A:6 CALCULATION OF THE APD RESPONSE.


Appendix A:7 SOURCE OF INFORMATION ON PHOTODETECTORS.


Index.

Preface

Preface

This book is an outgrowth of the lecture notes of a two-semester course in optoelectronics, which I started to give in 1976 at the University of Pavia. The lecture was given to electronic engineers in their final year of the MS curriculum. Through the years, I have rewritten the text several times, enlarged the scope, added data useful for design, and included new results coming from both by own research and new findings by others. Thus, the present book has become more similar to a treatise than to the original lecture book. I have tried to use a modern teaching approach, starting with simple ideas and developing a wide range of topics, so that this book can serve as a textbook in basic photoelectronics and also be profitable to the designer engineer looking for practical hints and solutions. Mathematical derivations are kept to a minimum, and readers interested in applications may skip them and go directly to the results, which I have tried to make useful by comments and examples. Complementary information and advanced considerations appear in reduced character size and may be skipped in a first reading. In the appendixes, I have collected some material either necessary as an introduction or of practical relevance for applications.

In the paradigm of optoelectronics, light is generated by a source - frequently a laser - which propagates in a medium, or interacts with it, and then comes to a detector where the desired information is converted back to an electrical signal. In the signal-to-noise budget, increasing the laser power by a factor of K is equivalent to reducing the detector noise by K - a simple statement whose importance is sometimes understated, but one that should always be kept in mind in order to optimize system performances of the photodetector.

Photodetectors are the forerunners of any frontier in optoelectronics. When an unusual spectral range or a new frequency band is explored, photodetectors are first to establish a tool for handling the optical signal. Then, optical components and laser sources follow. Thus, the excitement of the discovery comes more frequently with photodetectors than with the other optoelectronic devices. Figures P-1 through P-4, on the following pages, show just a sampling of the big achievements of photodetectors.

This book covers the very basic background of photodetection that should be mastered by any scientist or designer active in modern optoelectronics. To give an order-of-magnitude idea, in the optoelectronics-oriented curriculum offered at our engineering facility, one course is devoted to lasers, one to photodetection, one to fiberoptics communication, and one to electrooptics instrumentation.

This book is structured as follows. All types of photodetectors of practical importance covering the spectral range from UV to far IR are considered, first treating singe-point devices and then their image counterparts. For each photodetector, we begin by understanding the principle of operation. We then discuss parameters of performance, basic characteristics, special features, and application circuits with schematic details and design hints. Finally, we end up analyzing in special detail noise, which is the ultimate limit of sensitivity performance - the goal to be approached in any well-designed application.

Commenting on the list of contents, we start with the photoemissive (i.e., vacuum) devices, historically the first and presently in a technical decline, but still unparalleled in allowing the powerful single-photon counting regime actually exploited in several scientific applications. After a chapter on photocathodes and vacuum phototubes, in Chapter 3 we consider the system aspects of photodetection, stressing the importance of an internal gain mechanism in photodetectors, and also clarifying the regimes of detection as well as introducing the figures of merit.

Chapter 4 is fairly long and is devoted to photomultipliers because of their importance in a variety of applications. We present the basic theory, analyze the response in time and frequency domain, and discuss a number of applications.

Chapter 5 deals with semiconductor photodetectors and related devices, including the family of photodiodes, avalanche devices, phototransistors and photoconductors, and solar cells. In addition to physical aspects and electrical characteristics, we treat the application circuits, elucidating the design of front-end circuits and discussing their performances in a number of well-established applications, from instrumentation to large-bandwidth communication.

Infrared techniques and thermal detectors for non-contact temperature measurements and thermal-image pickup are treated in Chapters 6 and 7.

Chapter 8 is devoted to coherent detection and advanced techniques in photodetection, covering topics not usually found in textbooks and demonstrating how photodetection is far from being a completely explored field.

Chapter 9 treats image-sensing devices, including vidicon tubes, intensified image-tubes, and the CCD family. Finally, a series of appendixes is added to complement the text and deal with basic topics such as radiance invariance, eye sensitivity and color description, thermal and quantum noise, details of calculations omitted in the text, and more.

In regards to system aspects, the sensitivity/bandwidth tradeoff and the quantum/thermal regime of detection considered in Chapter 3 might also have been placed at the beginning of the book or merged in Chapter 8, but in my teaching experience I find they are best discussed soon after the very first description of detectors and their electrical parameters. Also, I have included a short chapter on solar cells because these devices are closely related to photodiodes and share the same technological problems and development issues (besides belonging to the optoelectronic engineer in systems deployment).

Thus, this book offers a rather wide coverage of photodetectors from the point of view of devices, circuits, and applications. I have tried to make each chapter self-contained and readable in itself so that it can be useful as a reference for anyone interested in solving his/her particular photodetection problem.

In my experience from the Italian edition, the text can be used for a two-semester course as a whole, or for a one-semester course with several different choices of arguments or stress upon devices, circuits, or system aspects. I have also used it for a series of seminars to Ph.D. students in an advanced course on photodetection and noise. I think that this book will also be a useful reference and aid for technical people and professionals involved in the design of photodetection systems. Engineers and physicists may use it as a guide in choosing the best solution and in evaluating the achievable performances in a photodetection problem. Designers should find it useful because of the abundant reference data on actual photodetectors, as well as for the practical circuits discussed.

For a full understanding of the technical content, this book requires as a prerequisite the basic courses in electronic devices and circuits, and the very fundamentals of semiconductors and noise. In regards to semiconductors, an excellent introduction is provided by Bhattacharya's book Semiconductor Optoelectronic Devices (Prentice Hall). Of course, many topics and ideas can be gathered from the material presented in this book as well, though with a more modest background.

In closing, I wish to thank the numerous researchers and students of mine for their help in collecting the text of my lectures and in suggesting corrections to the earlier versions. Among all, I am pleased to acknowledge my former Ph.D. student T. Tambosso, who collected and edited the first version with great care and suggested several major improvements to the content, incorporated since the first Italian edition.

I also wish to thank professor Joe C. Campbell of the University of Texas and professor Sergio Cova of the Polytechnic University of Milano for their encouragement and suggestions.

In my scientific career, I have found photodetection to be a very exciting and rewarding field of study. If I can convey to the reader the same enthusiasm and satisfaction, I will be amply rewarded for my efforts in writing this book. So, I dedicate this book to the brilliant young students who will become the scientists of tomorrow.

Silvano Donati
Pavia, Italy
email: donati@ipvsm6.unipv.it
June 1999



Figure P-1

The SuperKamiokande facility employs 11,200 giant PMTs (photomultipliers, see Chapter 4) valued at about 80 million US$, and paving the walls of a 40-meter diameter tank of water that probes the most elusive nuclear particles-neutrinos (courtesy of ICRR, University of Tokyo).



Figure P-2

Aboard the Sky Telescope, a 5000 x 5000 pixel CCD (charge coupled device, see Chapter 9) has provided this 10-day integration picture of deep sky (Hubble Deep Field Survey). Faintest spots are 30th magnitude galaxies, estimated to be 8 billion light-years away (courtesty of R. Williams and the HDF Team ST Scl, and NASA).



Figure P-3

Infrared thermography (see Chapter 6) unveils the blackbody thermal emission in the middle and far infrared (see Appendix A1), providing a non-contact map of the temperature differences, a powerful diagnostic tool in industrial, biomedical, and military applications (courtesy of Avio-Nippon Avionics Co.).



Figure P-4

A streak-camera based on an image converter tube (see Chapter 9) allows one to observe (a) a sequence of pictures at nanoseconds frame-rate, or (b) to resolve optical-pulse details down to a few picoseconds. By courtesy of Imacon Ltd, UK.

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020