Home > Store

Learning Bayesian Networks

Register your product to gain access to bonus material or receive a coupon.

Learning Bayesian Networks

Book

  • Sorry, this book is no longer in print.
Not for Sale

About

Features

  • Hundreds of examples and problems.
    • Allows students to test themselves.

  • Complex concepts are introduced with simple examples.
    • Eases the student into the text without being overwhelmed.

  • Separation of the statistical development of Bayesian networks from the application to causality.
    • Avoids confusion which can occur when the two are covered simultaneously.

Description

  • Copyright 2004
  • Dimensions: 7" x 9-1/4"
  • Pages: 696
  • Edition: 1st
  • Book
  • ISBN-10: 0-13-012534-2
  • ISBN-13: 978-0-13-012534-7

For courses in Bayesian Networks or Advanced Networking focusing on Bayesian networks found in departments of Computer Science, Computer Engineering and Electrical Engineering. Also appropriate as a supplementary text in courses on Expert Systems, Machine Learning, and Artificial Intelligence where the topic of Bayesian Networks is covered.

This book provides an accessible and unified discussion of Bayesian networks. It includes discussions of topics related to the areas of artificial intelligence, expert systems and decision analysis, the fields in which Bayesian networks are frequently applied. The author discusses both methods for doing inference in Bayesian networks and influence diagrams. The book also covers the Bayesian method for learning the values of discrete and continuous parameters. Both the Bayesian and constraint-based methods for learning structure are discussed in detail.

Sample Content

Table of Contents



Preface.

I. BASICS.

 1. Introduction to Bayesian Networks.
 2. More DAG/Probability Relationships.

II. INFERENCE.

 3. Inference: Discrete Variables.
 4. More Inference Algorithms.
 5. Influence Diagrams.

III. LEARNING.

 6. Parameter Learning: Binary Variables.
 7. More Parameter Learning.
 8. Bayesian Structure Learning.
 9. Approximate Bayesian Structure Learning.
10. Constraint-Based Learning.
11. More Structure Learning.

IV. APPICATIONS.

12. Applications.
Bibliography.
Index.

Preface

Bayesian networks are graphical structures for representing the probabilistic relationships among a large number of variables and for doing probabilistic inference with those variables. During the 1980s, a good deal of related research was done on developing Bayesian networks (belief networks, causal networks, influence diagrams), algorithms for performing inference with them, and applications that used them. However, the work was scattered throughout research articles. My purpose in writing the 1990 text Probabilistic Reasoning in Expert Systems was to unify this research and to establish a textbook and reference for the field which has come to be known as "Bayesian networks." The 1990s saw the emergence of excellent algorithms for learning Bayesian networks from data. However, by 2000 there still seemed to be no accessible source for "learning Bayesian networks." Similar to my purpose a decade ago, the goal of this text is to provide such a source.

In order to make this text a complete introduction to Bayesian networks, I discuss methods for doing inference in Bayesian networks and influence diagrams. However, there is no effort to be exhaustive in this discussion. For example, I give the details of only two algorithms for exact inference with discrete variables. . These algorithms are Pearl's message-passing algorithm and D'Ambrosio and Li's symbolic probabilistic inference algorithm. It may seem odd that I present Pearl's algorithm, since it is one of the oldest. I have two reasons for doing this: (1) Pearl's algorithm corresponds to a model of human causal reasoning, which is discussed in this text; and (2) Pearl's algorithm extends readily to an algorithm for doing inference with continuous variables, which is also discussed in this text.

The content of the text is as follows. Chapters 1 and 2 cover basics. Specifically, Chapter 1 provides an introduction to Bayesian networks; Chapter 2 discusses further relationships between DAGs and probability distributions such as d-separation, the faithfulness condition, and the minimality condition. Chapters 3-5 concern inference. Chapter 3 covers Pearl's message-passing algorithm, D'Ambrosio and Li's symbolic probabilistic inference, and the relationship of Pearl's algorithm to human causal reasoning. Chapter 4 presents an algorithm for doing inference with continuous variables, an approximate inference algorithm, and an algorithm for abductive inference (finding the most probable explanation). Chapter 5 discusses influence diagrams, which are Bayesian networks augmented with decision nodes and a value node, and dynamic Bayesian networks and influence diagrams. Chapters 6-10 address learning. Chapters 6 and 7 are concerned with parameter learning. Since the notation for these learning algorithm is somewhat arduous, I introduce the algorithms by discussing binary variables in Chapter 6. I then generalize to multinomial variables in Chapter 7. Furthermore, in Chapter 7, I discuss learning parameters when the variables are continuous. Chapters 8, 9, and 10 are concerned with structure learning. Chapter 8 presents the Bayesian method for learning structure in the cases of both discrete and continuous variables, while Chapter 9 discusses the constraint-based method for learning structure. Chapter 10 compares the Bayesian and constraint-based methods, and it presents several real-world examples of learning Bayesian networks. The text ends by referencing applications of Bayesian networks in Chapter 11.

This is a text on learning Bayesian networks; it is not a text on artificial intelligence, expert systems, or decision analysis. However, since these are fields in which Bayesian networks find application, they emerge frequently throughout the text. Indeed, I have used the manuscript for this text in my course on expert systems at Northeastern Illinois University. In one semester, I have found that I can cover the core of the following chapters: 1, 2, 3, 5, 6, 7, 8, and 9.

I would like to thank those researchers who have provided valuable corrections, comments, and dialog concerning the material in this text. They include Bruce D'Ambrosio, David Maxwell Chickering, Gregory Cooper, Tom Dean, Carl Entemann, John Erickson, Finn Jensen, Clark Glymour, Piotr Gmytrasiewicz, David Heckerman, Xia Jiang, James Kenevan, Henry Kyburg, Kathryn Blackmond Laskey, Don LaBudde, David Madigan, Christopher Meek, Paul-Andre Monney, Scott Morris, Peter Norvig, Judea Pearl, Richard Scheines, Marco Valtorta, Alex Wolpert, and Sandy Zabell. I thank Sue Coyle for helping me draw the cartoon containing the robots. The idea for the cover design was motivated by Eric Horvitz's graphic for the UAI `97 web page. I thank Mark McKernin for creating a stunning cover using that idea as a seed.

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020