SKIP THE SHIPPING
Use code NOSHIP during checkout to save 40% on eligible eBooks, now through January 5. Shop now.
This EPUB will be accessible from your Account page after purchase.
This eBook requires no passwords or activation to read. We customize your eBook by discreetly watermarking it with your name, making it uniquely yours.
Also available in other formats.
Register your product to gain access to bonus material or receive a coupon.
NEW TO THIS EDITION
The classic guide to mixtures, completely updated with new models, theories, examples, and data.
Efficient separation operations and many other chemical processes depend upon a thorough understanding of the properties of gaseous and liquid mixtures. Molecular Thermodynamics of Fluid-Phase Equilibria, Third Edition is a systematic, practical guide to interpreting, correlating, and predicting thermodynamic properties used in mixture-related phase-equilibrium calculations.
Completely updated, this edition reflects the growing maturity of techniques grounded in applied statistical thermodynamics and molecular simulation, while relying on classical thermodynamics, molecular physics, and physical chemistry wherever these fields offer superior solutions. Detailed new coverage includes:
Coverage also includes: fundamentals of classical thermodynamics of phase equilibria; thermodynamic properties from volumetric data; intermolecular forces; fugacities in gas and liquid mixtures; solubilities of gases and solids in liquids; high-pressure phase equilibria; virial coefficients for quantum gases; and much more.
Throughout, Molecular Thermodynamics of Fluid-Phase Equilibria strikes a perfect balance between empirical techniques and theory, and is replete with useful examples and experimental data. More than ever, it is the essential resource for engineers, chemists, and other professionals working with mixtures and related processes.
1. The Phase Equilibrium Problem.
2. Classical Thermodynamics of Phase Equilibria.
3. Thermodynamic Properties from Volumetric Data.
4. Intermolecular Forces, Corresponding States and Osmotic Systems.
5. Fugacities in Gas Mixtures.
6. Fugacities in Liquid Mixtures: Excess Functions.
7. Fugacities in Liquid Mixtures: Models and Theories of Solutions.
8. Polymers: Solutions, Blends, Membranes, and Gels.
9. Electrolyte Solutions.
10. Solubilities of Gases in Liquids.
11. Solubilities of Solids in Liquids.
12. High-Pressure Phase Equilibria.
Appendix A. Uniformity of Intensive Potentials as a Criterion of Phase Equilibrium.
Appendix B. A Brief Introduction to Statistical Thermodynamics.
Appendix C. Virial Coefficients for Quantum Gases.
Appendix D. The Gibbs-Duhem Equation.
Appendix E. Liquid-Liquid Equilibria in Binary and Multicomponent Systems.
Appendix F. Estimation of Activity Coefficients.
Appendix G. A General Theorem for Mixtures with Associating or Solvating Molecules.
Appendix H. Brief Introduction to Perturbation Theory of Dense Fluids.
Appendix I. The Ion-Interaction Model of Pitzer for Multielectrolyte Solutions.
Appendix J. Conversion Factors and Constants.
Index.