SKIP THE SHIPPING
Use code NOSHIP during checkout to save 40% on eligible eBooks, now through January 5. Shop now.
Register your product to gain access to bonus material or receive a coupon.
Helps students go beyond theory to build next-generation cryptographic systems that overcome the limitations of current technologies.
Helps students design cryptographic systems that are demonstrably secure.
Helps students understand how todays leading encryption protocols and standards were designed, and recognise their vulnerabilities.
Enables students to master advanced cryptographic design and development, even if they come to the course without a thorough grounding in the mathematics.
Helps students more clearly understand how cryptographic theory can be translated into real-world implementation.
Gives students confidence that they are receiving state-of-the-art information that is thorough, accurate, clear, and useful.
"This book would be a good addition to any cryptographer's bookshelf. The book is self-contained; it presents all the background material to understand an algorithm and all the development to prove its security. I'm not aware of another book that's as complete as this one."
--Christian Paquin, Cryptographic/Security Developer, Silanis Technology Inc. "The book is both complete, and extraordinarily technically accurate. It would certainly be a useful addition to any cryptographer's or crypto-engineer's library."
--Marcus Leech, Advisor, Security Architecture and Planning, Nortel Networks Build more secure crypto systems--and prove their trustworthiness Modern Cryptography is the indispensable resource for every technical professional who needs to implement strong security in real-world applications.
Leading HP security expert Wenbo Mao explains why "textbook" crypto schemes, protocols, and systems are profoundly vulnerable by revealing real-world-scenario attacks. Next, he shows how to realize cryptographic systems and protocols that are truly "fit for application"--and formally demonstrates their fitness. Mao presents practical examples throughout and provides all the mathematical background you'll need.
Coverage includes:
Mao introduces formal and reductionist methodologies to prove the "fit-for-application" security of practical encryption, signature, signcryption, and authentication schemes. He gives detailed explanations for zero-knowledge protocols: definition, zero-knowledge properties, equatability vs. simulatability, argument vs. proof, round-efficiency, and non-interactive versions.