Home > Store

Machine Learning with PyTorch LiveLessons (Video Training)

Machine Learning with PyTorch LiveLessons (Video Training)

Your browser doesn't support playback of this video. Please download the file to view it.

Online Video

Register your product to gain access to bonus material or receive a coupon.

Description

  • Copyright 2020
  • Edition: 1st
  • Online Video
  • ISBN-10: 0-13-562705-2
  • ISBN-13: 978-0-13-562705-1

6+ Hours of Video Instruction
 
Learn the main concepts and techniques used in modern machine learning and deep neural networks through numerous examples written in PyTorch

Overview
This course begins with the basic concepts of machine and deep learning. Subsequently, you gain a reasonable familiarity with the main features of PyTorch and learn how it can be applied to some popular problem domains.

About the Instructor
David Mertz has been involved with the Python community for 20 years, with data science (under various earlier names), and with machine learning (since way back when it was more likely to be called “artificial intelligence”). He was a director of the Python Software Foundation for six years and continues to serve on, or chair, a variety of PSF working groups.

He has also written quite a bit about Python: the column “Charming Python” for IBM developerWorks, for many years; the book Text Processing in Python (Addison-Wesley, 2003); and two short books for O’Reilly. He created the data science training program for Anaconda, Inc., and was a senior trainer for them.

Skill Level
Intermediate
 
Learn How To

  • Apply various machine and deep learning techniques
  • Understand the difference between various machine and deep learning libraries
  • Create classifiers
  • Enhance an existing classifier
 
Who Should Take This Course
Programmers and statisticians interested in using Python and the PyTorch library to implement machine learning
 
Course Requirements
Programming experience

Lesson Descriptions
 
Lesson 1: What Is Machine Learning? What Is Deep Learning
The first lesson begins with a high-level overview of the course. It then presents general concepts in machine learning and concepts specifically relevant to neural networks and deep learning. Ideas every data scientist should understand are discussed. The main libraries available for machine learning, and for deep learning specifically, are presented with an eye toward their comparison to PyTorch. The lesson contains an overview of basic concepts in neural networks. Also discussed is the basic idea of a perceptron and the enormous expansion of simple models with hardware that has become available in the last decade. The lesson delves into the main types of network layers available in neural networks. Activation functions are also discussed. Finally, the lesson finishes up with the importance of metrics in guiding refinements of machine learning models. Also discussed are a few of the most commonly used metrics and the need sometimes to use custom domain-specific metrics.

Lesson 2: Comparing Several Libraries
The second lesson of this course compares several different software libraries and shows the particular philosophy and programming style of PyTorch. The first library is scikit-learn, using polynomial feature engineering, random forest classification, and recursive feature elimination. The second library is TensorFlow and its Keras interface. We attempt to recreate features and power similar to the scikit-learn library. The final library we examine is PyTorch, in which we create an identical neural network to that built with Tensorflow, primarily to look at philosophical and API differences between those two popular deep learning libraries. We end by using PyTorch to classify images.

Lesson 3: Understanding PyTorch
The third lesson of this course examines the fundamental abstractions underlying PyTorch: the concept of a tensor, and the capability of performing automatic differentiation after modifications to tensors. The lesson examines the similarity between PyTorch tensors and the arrays in NumPy or other vectorized numeric libraries. It also introduce the two key additions PyTorch provides: auto-gradients that express the functional history of transformations; and also easy targeting of GPUs. The lesson next establishes a low-level neural network and then turns to implementing a neural network with torch.nn. We also take this opportunity with our simple neural network to explain the importance of a bias in input in fine-tuning network layers. The lesson ends by briefly demonstrating the speed gain of using GPUs mentioning the availability of torch.distributed for cluster computation.

Lesson 4: Tasks with Networks
The fourth lesson of this course goes into the most depth in presenting several different types of networks or other models in its sub-lessons. The first sub-lesson addresses a problem David does in his day job: making recommendations for clothing sizes based on some basic survey data about shoppers. In many ways, this problem is a very “classical” machine learning problem that tries to match a small number of features to a small number of output classes. Then the lesson turns to image classification, utilizing convolutional and pooling layers to predict target labels in a commonly used image data set. The network created is of moderate complexity but succeeds relatively well in categorizing images by the pictured object they contain. Next, regression prediction is used on the same problem in an attempt to make more effective prediction by reframing the problem as a regression problem rather than a classification problem. Then clustering with PyTorch is covered. This is a brief departure from neural networks as such, and addresses another common need in machine learning and data science. We implement the k-means algorithm using PyTorch and its underlying vectorized and GPU targeted tensor operations. One of the “hot” topics in deep learning is covered next–generative adversarial networks (GANs). David creates something akin to supervised learning in a framework that is, strictly-speaking, unsupervised. This is accomplished by letting two neural networks–one a “generator” and one a “discriminator”–compete against each other to, respectively, create and detect forgeries. Finally, neural networks are applied to another valuable area of their use–natural language processing. The network created, as with other examples in this lesson, is relatively simple. But the simple network utilizes a recurrent layer correctly to classify parts of speech in sentences, even ones with homonyms and lexical ambiguity.

Lesson 5: Enhancing an Image Classifier
The fifth and final lesson of this course looks at an important capability of deep neural networks: transfer learning. It is possible to treat a highly trained complex model almost as a software library for development of new capabilities on top of it. David leverages a very large and previously trained network as a sophisticated tool for feature engineering. Using work already done by others, and only a comparatively small increment of additional computation, David is able to create a network that accurately classifies images against novel labels that are not present in the original training dataset.

About Pearson Video Training
Pearson publishes expert-led video tutorials covering a wide selection of technology topics designed to teach you the skills you need to succeed. These professional and personal technology videos feature world-leading author instructors published by your trusted technology brands: Addison-Wesley, Cisco Press, Pearson IT Certification, Sams, and Que Topics include: IT Certification, Network Security, Cisco Technology, Programming, Web Development, Mobile Development, and more. Learn more about Pearson Video training at http://www.informit.com/video.

Video Lessons are available for download for offline viewing within the streaming format. Look for the green arrow in each lesson.

Sample Content

Table of Contents

Introduction

Lesson 1: What Is Machine Learning? What Is Deep Learning?

Learning objectives
1.1 Understand the course at a high level
1.2 Describe the techniques used in machine learning
1.3 Describe the libraries used in machine learning
1.4 Understand the difference between “deep learning” and other ML techniques
1.5 Utilize additional concepts in ML
1.6 Understand the types of network layers and activation functions
1.7 Understand metrics

Lesson 2: Comparing Several Libraries
Learning objectives
2.1 Perform a task in scikit-learn
2.2 Perform a task in Keras (with TensorFlow)
2.3 Perform a task in PyTorch
2.4 Classify an image with PyTorch

Lesson 3: Understanding PyTorch

Learning objectives
3.1 Use tensors, autograd, and NumPy interfaces
3.2 Establish a low-level neural network
3.3 Implement a neural network with torch.nn
3.4 Understand why bias is important
3.5 Identify other torch tools

Lesson 4: Tasks with Networks
Learning objectives
4.1 Create a simple feature classifier—Part 1
4.2 Create a simple feature classifier—Part 2
4.3 Create an image classifier
4.4 Utilize regression prediction
4.5 Do clustering with PyTorch
4.6 Use generative adversarial networks—Part 1
4.7 Use generative adversarial networks—Part 2
4.8 Use a part of speech tagger

Lesson 5: Enhancing an Image Classifier
Learning objectives
5.1 Start with torchvision.models
5.2 Retrain pretrained models
5.3 Modify network layers

Summary

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020