Home > Store

Machine Learning with Python for Everyone

EPUB (Watermarked)

Not for Sale

Also available in other formats.

Register your product to gain access to bonus material or receive a coupon.

About

Features

  • All students need to succeed in data science with Python: process, code, and implementation
  • Students will understand the machine learning process, leverage the powerful Python scikit-learn library, and master the algorithmic components of learning systems
  • Integrates clear narrative, carefully designed Python code, images, and interesting, intelligible datasets
  • Online resources for this book are available at the author's github site - https://github.com/mfenner1/mlwpy_code

Description

  • Copyright 2020
  • Dimensions: 7" x 9-1/8"
  • Pages: 592
  • Edition: 1st
  • EPUB (Watermarked)
  • ISBN-10: 0-13-484564-1
  • ISBN-13: 978-0-13-484564-7

The Complete Beginner’s Guide to Understanding and Building Machine Learning Systems with Python

Machine Learning with Python for Everyone will help you master the processes, patterns, and strategies you need to build effective learning systems, even if you’re an absolute beginner. If you can write some Python code, this book is for you, no matter how little college-level math you know. Principal instructor Mark E. Fenner relies on plain-English stories, pictures, and Python examples to communicate the ideas of machine learning.

Mark begins by discussing machine learning and what it can do; introducing key mathematical and computational topics in an approachable manner; and walking you through the first steps in building, training, and evaluating learning systems. Step by step, you’ll fill out the components of a practical learning system, broaden your toolbox, and explore some of the field’s most sophisticated and exciting techniques. Whether you’re a student, analyst, scientist, or hobbyist, this guide’s insights will be applicable to every learning system you ever build or use.

  • Understand machine learning algorithms, models, and core machine learning concepts
  • Classify examples with classifiers, and quantify examples with regressors
  • Realistically assess performance of machine learning systems
  • Use feature engineering to smooth rough data into useful forms
  • Chain multiple components into one system and tune its performance
  • Apply machine learning techniques to images and text
  • Connect the core concepts to neural networks and graphical models
  • Leverage the Python scikit-learn library and other powerful tools
Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Sample Content

Table of Contents

Foreword xxi
Preface xxiii
About the Author xxvii


Part I: First Steps 1

Chapter 1: Let’s Discuss Learning 3

1.1 Welcome 3
1.2 Scope, Terminology, Prediction, and Data 4
1.3 Putting the Machine in Machine Learning 7
1.4 Examples of Learning Systems 9
1.5 Evaluating Learning Systems 11
1.6 A Process for Building Learning Systems 13
1.7 Assumptions and Reality of Learning 15
1.8 End-of-Chapter Material 17

Chapter 2: Some Technical Background 19
2.1 About Our Setup 19
2.2 The Need for Mathematical Language 19
2.3 Our Software for Tackling Machine Learning 20
2.4 Probability 21
2.5 Linear Combinations, Weighted Sums, and Dot Products 28
2.6 A Geometric View: Points in Space 34
2.7 Notation and the Plus-One Trick 43
2.8 Getting Groovy, Breaking the Straight-Jacket, and Nonlinearity 45
2.9 NumPy versus “All the Maths” 47
2.10 Floating-Point Issues 52
2.11 EOC 53

Chapter 3: Predicting Categories: Getting Started with Classification 55
3.1 Classification Tasks 55
3.2 A Simple Classification Dataset 56
3.3 Training and Testing: Don’t Teach to the Test 59
3.4 Evaluation: Grading the Exam 62
3.5 Simple Classifier #1: Nearest Neighbors, Long Distance Relationships, and Assumptions 63
3.6 Simple Classifier #2: Naive Bayes, Probability, and Broken Promises 68
3.7 Simplistic Evaluation of Classifiers 70
3.8 EOC 81

Chapter 4: Predicting Numerical Values: Getting Started with Regression 85
4.1 A Simple Regression Dataset 85
4.2 Nearest-Neighbors Regression and Summary Statistics 87
4.3 Linear Regression and Errors 91
4.4 Optimization: Picking the Best Answer 98
4.5 Simple Evaluation and Comparison of Regressors 101
4.6 EOC 104

Part II: Evaluation 107

Chapter 5: Evaluating and Comparing Learners 109

5.1 Evaluation and Why Less Is More 109
5.2 Terminology for Learning Phases 110
5.3 Major Tom, There’s Something Wrong: Overfitting and Underfitting 116
5.4 From Errors to Costs 125
5.5 (Re)Sampling: Making More from Less 128
5.6 Break-It-Down: Deconstructing Error into Bias and Variance 142
5.7 Graphical Evaluation and Comparison 149
5.8 Comparing Learners with Cross-Validation 154
5.9 EOC 155

Chapter 6: Evaluating Classifiers 159
6.1 Baseline Classifiers 159
6.2 Beyond Accuracy: Metrics for Classification 161
6.3 ROC Curves 170
6.4 Another Take on Multiclass: One-versus-One 181
6.5 Precision-Recall Curves 185
6.6 Cumulative Response and Lift Curves 187
6.7 More Sophisticated Evaluation of Classifiers: Take Two 190
6.8 EOC 201

Chapter 7: Evaluating Regressors 205
7.1 Baseline Regressors 205
7.2 Additional Measures for Regression 207
7.3 Residual Plots 214
7.4 A First Look at Standardization 221
7.5 Evaluating Regressors in a More Sophisticated Way: Take Two 225
7.6 EOC 232

Part III: More Methods and Fundamentals 235

Chapter 8: More Classification Methods 237

8.1 Revisiting Classification 237
8.2 Decision Trees 239
8.3 Support Vector Classifiers 249
8.4 Logistic Regression 259
8.5 Discriminant Analysis 269
8.6 Assumptions, Biases, and Classifiers 285
8.7 Comparison of Classifiers: Take Three 287
8.8 EOC 290

Chapter 9: More Regression Methods 295
9.1 Linear Regression in the Penalty Box: Regularization 295
9.2 Support Vector Regression 301
9.3 Piecewise Constant Regression 308
9.4 Regression Trees 313
9.5 Comparison of Regressors: Take Three 314
9.6 EOC 318

Chapter 10: Manual Feature Engineering: Manipulating Data for Fun and Profit 321
10.1 Feature Engineering Terminology and Motivation 321
10.2 Feature Selection and Data Reduction: Taking out the Trash 324
10.3 Feature Scaling 325
10.4 Discretization 329
10.5 Categorical Coding 332
10.6 Relationships and Interactions 341
10.7 Target Manipulations 350
10.8 EOC 356

Chapter 11: Tuning Hyperparameters and Pipelines 359
11.1 Models, Parameters, Hyperparameters 360
11.2 Tuning Hyperparameters 362
11.3 Down the Recursive Rabbit Hole: Nested Cross-Validation 370
11.4 Pipelines 377
11.5 Pipelines and Tuning Together 380
11.6 EOC 382

Part IV: Adding Complexity 385

Chapter 12: Combining Learners 387

12.1 Ensembles 387
12.2 Voting Ensembles 389
12.3 Bagging and Random Forests 390
12.4 Boosting 398
12.5 Comparing the Tree-Ensemble Methods 401
12.6 EOC 405

Chapter 13: Models That Engineer Features for Us 409
13.1 Feature Selection 411
13.2 Feature Construction with Kernels 428
13.3 Principal Components Analysis: An Unsupervised Technique 445
13.4 EOC 462

Chapter 14: Feature Engineering for Domains: Domain-Specific Learning 469
14.1 Working with Text 470
14.2 Clustering 479
14.3 Working with Images 481
14.4 EOC 493

Chapter 15: Connections, Extensions, and Further Directions 497
15.1 Optimization 497
15.2 Linear Regression from Raw Materials 500
15.3 Building Logistic Regression from Raw Materials 504
15.4 SVM from Raw Materials 510
15.5 Neural Networks 512
15.6 Probabilistic Graphical Models 516
15.7 EOC 525

Appendix A: mlwpy.py Listing 529

Index 537

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020