HAPPY BOOKSGIVING
Use code BOOKSGIVING during checkout to save 40%-55% on books and eBooks. Shop now.
Video accessible from your Account page after purchase.
Register your product to gain access to bonus material or receive a coupon.
5+ Hours of Video Instruction
Machine Learning Fundamentals with Amazon SageMaker on AWS LiveLessons teaches the fundamental concepts and taxonomy for machine learning and provides a high-level overview of the tools, languages, and libraries that Amazon SageMaker uses, including the AWS console, Jupyter Notebooks, languages, and interactive data analysis libraries.
Overview
Machine Learning Fundamentals with Amazon SageMaker on AWS LiveLessons teaches the fundamental concepts and taxonomy for machine learning. It provides specific scenarios, so the user can determine if ML would be beneficial. The course also provides a high-level overview of the tools, languages, and libraries that Amazon SageMaker uses, including the AWS console, Jupyter Notebooks, languages such as Python, and interactive data analysis libraries such as Pandas. This course will also discusses common algorithms and models used with ML and Amazon SageMaker, which will help determine the appropriate model to use in specific business scenarios.
Through this course the user will walk through Amazon SageMaker’s end-to-end workflow using practical and pragmatic business scenarios. You’ll see how you can benefit from the ability of a machine to make predictions on future data through hands-on labs and key concepts. AWS is continuing to make great strides to innovate their Artificial Intelligence and Machine Learning Platform. The concepts learned in this course will provide you with the foundation to build your own innovative systems on this dynamic platform.
Topics include:
Module 1: What is Amazon SageMaker?
Module 2: Fundamentals Machine Learning Concepts with Practical Applications
Module 3: Amazon SageMaker Supporting Tools and Technologies
Module 4: Data and Model Management with Amazon SageMaker
Module 5: Predictions and Deployment with Amazon SageMaker
Skill Level
Learn How To
Who Should Take This Course
Course Requirements
Lesson Descriptions
Module 1, "What is Amazon SageMaker?," provides a history of the evolution of AI and ML. The benefits of Amazon SageMaker will be reviewed and sample use cases are provided. After you're comfortable with the basics, you'll learn about how Amazon SageMaker works. We’ll talk about the lifecycle of ML processing and options for data sources. In the last lesson, we’ll do a walkthrough of the Amazon SageMaker console and discuss the various sub-services available within Amazon SageMaker. By the end of this module, you should be able to explain Amazon SageMaker to your friends and have some experience with the AWS Console.
Module 2, "Fundamentals Machine Learning Concepts with Practical Applications," dives into the taxonomy and terms used in the machine-learning world. This module is all about information architecture, including features, observations, and ground truth. We’ll learn about what makes good data and how you can make intelligent choices with preparing your data for Amazon ML.
Module 3, "Amazon SageMaker Supporting Tools and Technologies." After a quick refresher on key technologies used in conjunction with Amazon SageMaker, the remainder of this module is entirely composed of demos, which is designed to share the hands-on experience creating a new Amazon SageMaker data source, configuring that data source, and refining the schema. We’ll work directly with the S3 and the Amazon SageMaker console and experiment with features on managing your Amazon SageMaker data source. We will do this by leveraging the sample notebooks and algorithms provided by Amazon SageMaker.
Module 4, "Data and Model Management with Amazon SageMaker," will show how to prepare and upload data to Amazon S3. Using a real-life example, we’ll spend two lessons on learning about algorithms so that we can build an appropriate model. After we have our model in place, we’ll cover tips on how you can assess performance and fine tune the model as necessary.
Module 5, "Predictions and Deployment with Amazon SageMaker," talks about deployment and dives into predictions and determining future data. So far, we have provided you with the tools to construct quality datasets so that your SageMaker model performs well. Now, we will deploy that model in order to conduct predictions. This is a great way to build sales forecasts, as well as value a curated collection. It also provides some helpful cleanup tips so that you don’t incur unnecessary charges.
About Pearson Video Training
Pearson publishes expert-led video tutorials covering a wide selection of technology topics designed to teach you the skills you need to succeed. These professional and personal technology videos feature world-leading author instructors published by your trusted technology brands: Addison-Wesley, Cisco Press, Pearson IT Certification, Prentice Hall, Sams, and Que. Topics include: IT Certification, Network Security, Cisco Technology, Programming, Web Development, Mobile Development, and more. Learn more about Pearson Video training at http://www.informit.com/video.
Video Lessons are available for download for offline viewing within the streaming format. Look for the green arrow in each lesson.
Module 1: What is Amazon SageMaker?
Lesson 1: Amazon Artificial Intelligence and Machine Learning Overview
Lesson 2: How Does Amazon SageMaker Work?
Lesson 3: Which Use Cases Can Amazon SageMaker Solve?
Lesson 4: High Level Overview of the Amazon SageMaker Components
Module 2: Fundamentals Machine Learning Concepts with Practical Applications
Lesson 5: Machine Learning Concepts and Taxonomy
Lesson 6: Selecting the Appropriate Data
Lesson 7: Practical Applications for Machine Learning
Module 3: Amazon SageMaker Supporting Tools and Technologies
Lesson 8: Refresher on Technologies Leveraged by Amazon SageMaker
Lesson 9: Interactive Lab: Review the SageMaker Console
Lesson 10: Interactive Lab: Working with Jupyter Notebooks
Lesson 11: Interactive Lab: Example SageMaker Notebooks
Module 4: Data and Model Management with Amazon SageMaker
Lesson 12: Data and Model Management with Amazon SageMaker
Lesson 13: A Closer Look at Algorithms
Lesson 14: Algorithms Selection
Lesson 15: Model Training
Lesson 16: Assess Model Performance
Module 5: Predictions and Deployment with Amazon SageMaker
Lesson 17: Deploy Model
Lesson 18: Predictions or Inferences
Lesson 19: Call to Action & Conclusion