Home > Store

Fundamentals of Statistical Signal Processing, Volume II: Detection Theory

Register your product to gain access to bonus material or receive a coupon.

Fundamentals of Statistical Signal Processing, Volume II: Detection Theory

Book

  • Your Price: $116.45
  • List Price: $137.00
  • Usually ships in 24 hours.

Description

  • Copyright 1998
  • Dimensions: 7" x 9-1/4"
  • Pages: 576
  • Edition: 1st
  • Book
  • ISBN-10: 0-13-504135-X
  • ISBN-13: 978-0-13-504135-2

The most comprehensive overview of signal detection available.

This is a thorough, up-to-date introduction to optimizing detection algorithms for implementation on digital computers. It focuses extensively on real-world signal processing applications, including state-of-the-art speech and communications technology as well as traditional sonar/radar systems.

Start with a quick review of the fundamental issues associated with mathematical detection, as well as the most important probability density functions and their properties. Next, review Gaussian, Chi-Squared, F, Rayleigh, and Rician PDFs, quadratic forms of Gaussian random variables, asymptotic Gaussian PDFs, and Monte Carlo Performance Evaluations.

Three chapters introduce the basics of detection based on simple hypothesis testing, including the Neyman-Pearson Theorem, handling irrelevant data, Bayes Risk, multiple hypothesis testing, and both deterministic and random signals.

The author then presents exceptionally detailed coverage of composite hypothesis testing to accommodate unknown signal and noise parameters. These chapters will be especially useful for those building detectors that must work with real, physical data. Other topics covered include:

  • Detection in nonGaussian noise, including nonGaussian noise characteristics, known deterministic signals, and deterministic signals with unknown parameters
  • Detection of model changes, including maneuver detection and time-varying PSD detection
  • Complex extensions, vector generalization, and array processing

The book makes extensive use of MATLAB, and program listings are included wherever appropriate. Designed for practicing electrical engineers, researchers, and advanced students, it is an ideal complement to Steven M. Kay's Fundamentals of Statistical Signal Processing, Vol. 1: Estimation Theory (ISBN: 0-13-345711-7).

Sample Content

Table of Contents

(NOTE: Most chapters begin with an Introduction and Summary.)

1. Introduction.

Detection Theory in Signal Processing. The Detection Problem. The Mathematical Detection Problem. Hierarchy of Detection Problems. Role of Asymptotics. Some Notes to the Reader.



2. Summary of Important PDFs.

Fundamental Probability Density Functionshfil Penalty - M and Properties. Quadratic Forms of Gaussian Random Variables. Asymptotic Gaussian PDF. Monte Carlo Performance Evaluation. Number of Required Monte Carlo Trials. Normal Probability Paper. MATLAB Program to Compute Gaussian Right-Tail Probability and its Inverse. MATLAB Program to Compute Central and Noncentral c 2 Right-Tail Probability. MATLAB Program for Monte Carlo Computer Simulation.



3. Statistical Decision Theory I.

Neyman-Pearson Theorem. Receiver Operating Characteristics. Irrelevant Data. Minimum Probability of Error. Bayes Risk. Multiple Hypothesis Testing. Neyman-Pearson Theorem. Minimum Bayes Risk Detector - Binary Hypothesis. Minimum Bayes Risk Detector - Multiple Hypotheses.



4. Deterministic Signals.

Matched Filters. Generalized Matched Filters. Multiple Signals. Linear Model. Signal Processing Examples. Reduced Form of the Linear Model1.



5. Random Signals.

Estimator-Correlator. Linear Model1. Estimator-Correlator for Large Data Records. General Gaussian Detection. Signal Processing Example. Detection Performance of the Estimator-Correlator.



6. Statistical Decision Theory II.

Composite Hypothesis Testing. Composite Hypothesis Testing Approaches. Performance of GLRT for Large Data Records. Equivalent Large Data Records Tests. Locally Most Powerful Detectors. Multiple Hypothesis Testing. Asymptotically Equivalent Tests - No Nuisance Parameters. Asymptotically Equivalent Tests - Nuisance Parameters. Asymptotic PDF of GLRT. Asymptotic Detection Performance of LMP Test. Alternate Derivation of Locally Most Powerful Test. Derivation of Generalized ML Rule.



7. Deterministic Signals with Unknown Parameters.

Signal Modeling and Detection Performance. Unknown Amplitude. Unknown Arrival Time. Sinusoidal Detection. Classical Linear Model. Signal Processing Examples. Asymptotic Performance of the Energy Detector. Derivation of GLRT for Classical Linear Model.



8. Random Signals with Unknown Parameters.

Incompletely Known Signal Covariance. Large Data Record Approximations. Weak Signal Detection. Signal Processing Example. Derivation of PDF for Periodic Gaussian Random Process.



9. Unknown Noise Parameters.

General Considerations. White Gaussian Noise. Colored WSS Gaussian Noise. Signal Processing Example. Derivation of GLRT for Classical Linear Model for s 2 Unknown. Rao Test for General Linear Model with Unknown Noise Parameters. Asymptotically Equivalent Rao Test for Signal Processing Example.



10. NonGaussian Noise.

NonGaussian Noise Characteristics. Known Deterministic Signals. Deterministic Signals with Unknown Parameters. Signal Processing Example. Asymptotic Performance of NP Detector for Weak Signals. BRao Test for Linear Model Signal with IID NonGaussian Noise.



11. Summary of Detectors.

Detection Approaches. Linear Model. Choosing a Detector. Other Approaches and Other Texts.



12. Model Change Detection.

Description of Problem. Extensions to the Basic Problem. Multiple Change Times. Signal Processing Examples. General Dynamic Programming Approach to Segmentation. MATLAB Program for Dynamic Programming.



13. Complex/Vector Extensions, and Array Processing.

Known PDFs. PDFs with Unknown Parameters. Detectors for Vector Observations. Estimator-Correlator for Large Data Records. Signal Processing Examples. PDF of GLRT for Complex Linear Model. Review of Important Concepts. Random Processes and Time Series Modeling.

Preface

Preface

This text is the second volume of a series of books addressing statistical signal processing. The first volume, Fundamentals of Statistical Signal Processing: Estimation Theory, was published in 1993 by Prentice-Hall, Inc. Henceforth, it will be referred to as Kay-I 1993.

This second volume, entitled Fundamentals of Statistical Signal Processing: Detection Theory, is the application of statistical hypothesis testing to the detection of signals in noise. The series has been written to provide the reader with a broad introduction to the theory and application of statistical signal processing. Hypothesis testing is a subject that is standard fare in the many books available dealing with statistics.

These books range from the highly theoretical expositions written by statisticians to the more practical treatments contributed by the many users of applied statistics.

This text is an attempt to strike a balance between these two extremes. The particular audience we have in mind is the community involved in the design and implementation of signal processing algorithms. As such, the primary focus is on obtaining optimal detection algorithms that may be implemented on a digital computer. The data sets are therefore assumed to be samples of a continuous-time waveform or a sequence of data points. The choice of topics reflects what we believe to be the important approaches to obtaining an optimal detector and analyzing its performance.

As a consequence, some of the deeper theoretical issues have been omitted with references given instead. It is the author's opinion that the best way to assimilate the material on detection theory is by exposure to and working with good examples. Consequently, there are numerous examples that illustrate the theory and others that apply the theory to actual detection problems of current interest.

We have made extensive use of the MATLAB scientific programming language (Version 4.2b) Footnote: MATLAB is a registered trademark of The MathWorks, Inc. for all computer-generated results. In some cases, actual MATLAB programs have been listed where a program was deemed to be of sufficient utility to the reader.

Additionally, an abundance of homework problems has been included. They range from simple applications of the theory to extensions of the basic concepts. A solutions manual is available from the author. To aid the reader, summary sections have been provided at the beginning of each chapter. Also, an overview of all the principal detection approaches and the rationale for choosing a particular method can be found in Chapter 11.

Detection based on simple hypothesis testing is described in Chapters 3--5, while that based on composite hypothesis testing (to accomodate unknown parameters) is the subject of Chapters 6--9.

Other chapters address detection in nonGaussian noise (Chapter 10), detection of model changes (Chapter 12), and extensions for complex/vector data useful in array processing (Chapter 13). This book is an outgrowth of a one-semester graduate level course on detection theory given at the University of Rhode Island. It includes somewhat more material than can actually be covered in one semester. We typically cover most of Chapters 1--10, leaving the subjects of model change detection and complex data/vector data extensions to the student. It is also possible to combine the subjects of estimation and detection into a single semester course by a judicious choice of material from Volumes I and II.

The necessary background that has been assumed is an exposure to the basic theory of digital signal processing, probability and random processes, and linear and matrix algebra. This book can also be used for self-study and so should be useful to the practicing engineer as well as the student.

The author would like to acknowledge the contributions of the many people who over the years have provided stimulating discussions of research problems, opportunities to apply the results of that research, and support for conducting research.

Thanks are due to my colleagues L. Jackson, R. Kumaresan, L. Pakula, and P. Swaszek of the University of Rhode Island, and L. Scharf of the University of Colorado.

Exposure to practical problems, leading to new research directions, has been provided by H. Woodsum of Sonetech, Bedford, New Hampshire, and by D. Mook and S. Lang of Sanders, a Lockheed-Martin Co., Nashua, New Hampshire.

The opportunity to apply detection theory to sonar and the research support of J. Kelly of the Naval Undersea Warfare Center, J. Salisbury, formerly of the Naval Undersea Warfare Center, and D. Sheldon of the Naval Undersea Warfare Center, Newport, Rhode Island are also greatly appreciated.

Thanks are due to J. Sjogren of the Air Force Office of Scientific Research, whose support has allowed the author to investigate the field of statistical signal processing. A debt of gratitude is owed to all my current and former graduate students. They have contributed to the final manuscript through many hours of pedagogical and research discussions as well as by their specific comments and questions. In particular, P. DjuriÕ{c} of the State University of New York proofread much of the manuscript, and S. Talwalkar of Motorola, Plantation, Florida proofread parts of the manuscript and helped with the finer points of MATLAB.

Steven M. Kay University of Rhode Island Kingston, RI 02881 Email: kay@ele.uri.edu

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020