Home > Store

Art of Computer Programming, The: Volume 3: Sorting and Searching, 2nd Edition

Register your product to gain access to bonus material or receive a coupon.

Art of Computer Programming, The: Volume 3: Sorting and Searching, 2nd Edition

Best Value Purchase

Book + eBook Bundle

  • Your Price: $90.94
  • List Price: $156.98
  • Includes EPUB and PDF
  • About eBook Formats
  • This eBook includes the following formats, accessible from your Account page after purchase:

    ePub EPUB The open industry format known for its reflowable content and usability on supported mobile devices.

    Adobe Reader PDF The popular standard, used most often with the free Acrobat® Reader® software.

    This eBook requires no passwords or activation to read. We customize your eBook by discreetly watermarking it with your name, making it uniquely yours.

More Purchase Options

Book

  • Your Price: $63.99
  • List Price: $79.99
  • Usually ships in 24 hours.

eBook (Watermarked)

  • Your Price: $61.59
  • List Price: $76.99
  • Includes EPUB and PDF
  • About eBook Formats
  • This eBook includes the following formats, accessible from your Account page after purchase:

    ePub EPUB The open industry format known for its reflowable content and usability on supported mobile devices.

    Adobe Reader PDF The popular standard, used most often with the free Acrobat® Reader® software.

    This eBook requires no passwords or activation to read. We customize your eBook by discreetly watermarking it with your name, making it uniquely yours.

About

Features

Innovations interviews Donald Knuth
Donald E. Knuth was born on January 10, 1938 in Milwaukee, Wisconsin. He studied mathematics as an undergraduate at Case Institute of Technology, where he also wrote software at the Computing Center. The Case faculty took the unprecedented step of awarding him a Master's degree together with the B.S. he received in 1960. After graduate studies at California Institute of Technology, he received a Ph.D. in Mathematics in 1963 and then remained on the mathematics faculty. Throughout this period he continued to be involved with software development, serving as consultant to Burroughs Corporation from 1960-1968 and as editor of Programming Languages for ACM publications from 1964-1967.

He joined Stanford University as Professor of Computer Science in 1968, and was appointed to Stanford's first endowed chair in computer science nine years later. As a university professor he introduced a variety of new courses into the curriculum, notably Data Structures and Concrete Mathematics. In 1993 he became Professor Emeritus of The Art of Computer Programming. He has supervised the dissertations of 28 students.

Knuth began in 1962 to prepare textbooks about programming techniques, and this work evolved into a projected seven-volume series entitled The Art of Computer Programming. Volumes 1-3 first appeared in 1968, 1969, and 1973. Having revised these three in 1997, he is now working full time on the remaining volumes. Approximately one million copies have already been printed, including translations into six languages. He took ten years off from this project to work on digital typography, developing the TeX system for document preparation and the METAFONT system for alphabet design. Noteworthy by-products of those activities were the WEB and CWEB languages for structured documentation, and the accompanying methodology of Literate Programming. TeX is now used to produce most of the world's scientific literature in physics and mathematics.

His research papers have been instrumental in establishing several subareas of computer science and software engineering: LR(k) parsing; attribute grammars; the Knuth-Bendix algorithm for axiomatic reasoning; empirical studies of user programs and profiles; analysis of algorithms. In general, his works have been directed towards the search for a proper balance between theory and practice.

Professor Knuth received the ACM Turing Award in 1974 and became a Fellow of the British Computer Society in 1980, an Honorary Member of the IEEE in 1982. He is a member of the American Academy of Arts and Sciences, the National Academy of Sciences, the National Academy of Engineering, and a foreign associate of l'Academie des Sciences (Paris) and Det Norske Videnskaps-Akademi (Oslo). He holds five patents and has published approximately 160 papers in addition to his 19 books. He received the Medal of Science from President Carter in 1979, the American Mathematical Society's Steele Prize for expository writing in 1986, the New York Academy of Sciences Award in 1987, the J.D. Warnier Prize for software methodology in 1989, the Adelsköld Medal from the Swedish Academy of Sciences in 1994, the Harvey Prize from the Technion in 1995, and the Kyoto Prize for advanced technology in 1996. He was a charter recipient of the IEEE Computer Pioneer Award in 1982, after having received the IEEE Computer Society's W. Wallace McDowell Award in 1980; he received the IEEE's John von Neumann Medal in 1995. He holds honorary doctorates from Oxford University, the University of Paris, St. Petersburg University, and more than a dozen colleges and universities in America.

Professor Knuth lives on the Stanford campus with his wife, Jill. They have two children, John and Jennifer. Music is his main avocation.

Description

  • Copyright 1998
  • Dimensions: 6-3/8" x 9-1/4"
  • Pages: 800
  • Edition: 2nd
  • Book
  • ISBN-10: 0-201-89685-0
  • ISBN-13: 978-0-201-89685-5

The bible of all fundamental algorithms and the work that taught many of today's software developers most of what they know about computer programming.

Byte, September 1995

I can't begin to tell you how many pleasurable hours of study and recreation they have afforded me! I have pored over them in cars, restaurants, at work, at home... and even at a Little League game when my son wasn't in the line-up.

Charles Long

If you think you're a really good programmer... read [Knuth's] Art of Computer Programming... You should definitely send me a resume if you can read the whole thing.

Bill Gates

It's always a pleasure when a problem is hard enough that you have to get the Knuths off the shelf. I find that merely opening one has a very useful terrorizing effect on computers.

Jonathan Laventhol

The first revision of this third volume is the most comprehensive survey of classical computer techniques for sorting and searching. It extends the treatment of data structures in Volume 1 to consider both large and small databases and internal and external memories. The book contains a selection of carefully checked computer methods, with a quantitative analysis of their efficiency. Outstanding features of the second edition include a revised section on optimum sorting and new discussions of the theory of permutations and of universal hashing.

Sample Content

Online Sample Chapters

Preface to The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd Edition

The Art of Computer Programming, Volume 3: Combinatorial Properties of Permutations

Table of Contents



5. Sorting.

Combinatorial Properties of Permutations.

Inversions.

Permutations of a Multiset.

Runs.

Tableaux and Involutions.

Internal sorting.

Sorting by Insertion.

Sorting by Exchanging.

Sorting by Selection.

Sorting by Merging.

Sorting by Distribution.

Optimum Sorting.

Minimum-Comparison Sorting.

Minimum-Comparison Merging.

Minimum-Comparison Selection.

Networks for Sorting.

External Sorting.

Multiway Merging and Replacement Selection.

The Polyphase Merge.

The Cascade Merge.

Reading Tape Backwards.

The Oscillating Sort.

Practical Considerations for Tape Merging.

External Radix Sorting.

Two-Tape Sorting.

Disks and Drums.

Summary, History, and Bibliography.



6. Searching.

Sequential Searching.

Searching by Comparison of Keys.

Searching an Ordered Table.

Binary Tree Searching.

Balanced Trees.

Multiway Trees.

Digital Searching.

Hashing.

Retrieval on Secondary Keys.



Answers to Exercises.


Appendix A: Tables of Numerical Quantities.

Fundamental Constants (decimal).

Fundamental Constants (octal).

Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers.



Appendix B: Index to Notations.


Index and Glossary. 0201896850T04062001

Preface

Cookery is become an art,
a noble science;
cooks are gentlemen.

TITUS LIVIUS, Ab Urbe Condita XXXIX.vi
(Robert Burton, Anatomy of Melancholy 1.2.2.2)

This book forms a natural sequel to the material on information structures in Chapter 2 of Volume 1, because it adds the concept of linearly ordered data to the other basic structural ideas.

The title "Sorting and Searching" may sound as if this book is only for those systems programmers who are concerned with the preparation of general-purpose sorting routines or applications to information retrieval. But in fact the area of sorting and searching provides an ideal framework for discussing a wide variety of important general issues:

  • How are good algorithms discovered?
  • How can given algorithms and programs be improved?
  • How can the efficiency of algorithms be analyzed mathematically?
  • How can a person choose rationally between different algorithms for the same task?
  • In what senses can algorithms be proved ''best possible''?
  • How does the theory of computing interact with practical considerations?
  • How can external memories like tapes, drums, or disks be used efficiently with large databases?

Indeed, I believe that virtually every important aspect of programming arises somewhere in the context of sorting or searching!

This volume comprises Chapters 5 and 6 of the complete series. Chapter 5 is concerned with sorting into order; this is a large subject that has been divided chiefly into two parts, internal sorting and external sorting. There also are supplementary sections, which develop auxiliary theories about permutations (Section 5.1) and about optimum techniques for sorting (Section 5.3). Chapter 6 deals with the problem of searching for specified items in tables or files; this is subdivided into methods that search sequentially, or by comparison of keys, or by digital properties, or by hashing, and then the more difficult problem of secondary key retrieval is considered. There searching related to sorting is a surprising amount of interplay between both chapters, with strong analogies tying the topics together. Two important varieties of information structures are also discussed, in addition to those considered in Chapter 2, namely priority queues (Section 5.2.3) and linear lists represented as balanced trees (Section 6.2.3).

Like Volumes 1 and 2, this book includes a lot of material that does not appear in other publications. Many people have kindly written to me about their ideas, or spoken to me about them, and I hope that I have not distorted the material too badly when I have presented it in my own words.

I have not had time to search the patent literature systematically; indeed, I decry the current tendency to seek patents on algorithms (see Section 5.4.5). If somebody sends me a copy of a relevant patent not presently cited in this book, I will dutifully refer to it in future editions. However, I want to encourage people to continue the centuries-old mathematical tradition of putting newly discovered algorithms into the public domain. There are better ways to earn a living than to prevent other people from making use of one's contributions to computer science.

Before I retired from teaching, I used this book as a text for a student's second course in data structures, at the junior-to-graduate level, omitting most of the mathematical material. I also used the mathematical portions of this book as the basis for graduate-level courses in the analysis of algorithms, emphasizing especially Sections 5.1, 5.2.2, 6.3, and 6.4. A graduate-level course on concrete computational complexity could also be based on Sections 5.3, and 5.4.4, together with Sections 4.3.3, 4.6.3, and 4.6.4 of Volume 2.

For the most part this book is self-contained, except for occasional discussions relating to the MIX computer explained in Volume 1. Appendix B MIX computer contains a summary of the mathematical notations used, some of which are a little different from those found in traditional mathematics books.

Preface to the Second Edition

This new edition matches the third editions of Volumes 1 and 2, in which I have been able to celebrate the completion of TeX and MF by applying those systems to the publications they were designed for.

The conversion to electronic format has given me the opportunity to go over every word of the text and every punctuation mark. I've tried to retain the youthful exuberance of my original sentences while perhaps adding some more mature judgment. Dozens of new exercises have been added; dozens of old exercises have been given new and improved answers. Changes appear everywhere, but most significantly in Sections 5.1.4 (about permutations and tableaux), 5.3 (about optimum sorting), 5.4.9 (about disk sorting), 6.2.2 (about entropy), 6.4 (about universal hashing), and 6.5 (about multidimensional trees and tries).

The Art of Computer Programming is, however, still a work in progress. Research on sorting and searching continues to grow at a phenomenal rate. Therefore some parts of this book are headed by an ''under construction'' icon, to apologize for the fact that the material is not up-to-date. For example, if I were teaching an undergraduate class on data structures today, I would surely discuss randomized structures such as treaps at some length; but at present, I am only able to cite the principal papers on the subject, and to announce plans for a future Section 6.2.5 (see page 6.2.5). My files are bursting with important material that I plan to include in the final, glorious, third edition of Volume 3, perhaps 17 years from now. But I must finish Volumes 4 and 5 first, and I do not want to delay their publication any more than absolutely necessary.

I am enormously grateful to the many hundreds of people who have helped me to gather and refine this material during the past 35 years. Most of the hard work of preparing the new edition was accomplished by Phyllis Winkler (who put the text of the first edition into TeX form), by Silvio Levy (who edited it extensively and helped to prepare several dozen illustrations), and by Jeffrey Oldham (who converted more than 250 of the original illustrations to METAPOST format). The production staff at Addison Wesley has also been extremely helpful, as usual.

D. E. K.
Stanford, California
February 1998
There are certain common Privileges of a Writer,
the Benefit whereof, I hope, there will be no Reason to doubt;
Particularly, that where I am not understood, it shall be concluded,
that something very useful and profound is coucht underneath.

JONATHAN SWIFT, Tale of a Tub, Preface (1704)


0201896850P04062001

Updates

Submit Errata

More Information

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020