Home > Articles > Programming > PHP

Memory Management with PHP

Memory management is critical to long-running programs like server daemons, so understanding how to allocate and free memory in PHP is crucial to creating these programs. This chapter covers memory management in PHP.
This chapter is from the book

This chapter is from the book

ONE OF THE MOST JARRING DIFFERENCES BETWEEN A MANAGED language like PHP, and an unmanaged language like C is control over memory pointers.

Memory

In PHP, populating a string variable is as simple as <?php $str = 'hello world'; ?> and the string can be freely modified, copied, and moved around. In C, on the other hand, although you could start with a simple static string such as char *str = "hello world";, that string cannot be modified because it lives in program space. To create a manipulable string, you'd have to allocate a block of memory and copy the contents in using a function such as strdup().

{
   char *str;

   str = strdup("hello world");
   if (!str) {
       fprintf(stderr, "Unable to allocate memory!");
   }
}

For reasons you'll explore through the course of this chapter, the traditional memory management functions (malloc(), free(), strdup(), realloc(), calloc(), and so on) are almost never used directly by the PHP source code.

Free the Mallocs

Memory management on nearly all platforms is handled in a request and release fashion. An application says to the layer above it (usually the operating system) "I want some number of bytes of memory to use as I please." If there is space available, the operating system offers it to the program and makes a note not to give that chunk of memory out to anyone else.

When the application is done using the memory, it's expected to give it back to the OS so that it can be allocated elsewhere. If the program doesn't give the memory back, the OS has no way of knowing that it's no longer being used and can be allocated again by another process. If a block of memory is not freed, and the owning application has lost track of it, then it's said to have "leaked" because it's simply no longer available to anyone.

In a typical client application, small infrequent leaks are sometimes tolerated with the knowledge that the process will end after a short period of time and the leaked memory will be implicitly returned to the OS. This is no great feat as the OS knows which program it gave that memory to, and it can be certain that the memory is no longer needed when the program terminates.

With long running server daemons, including web servers like Apache and by extension mod_php, the process is designed to run for much longer periods, often indefinitely. Because the OS can't clean up memory usage, any degree of leakage—no matter how small—will tend to build up over time and eventually exhaust all system resources.

Consider the userspace stristr() function; in order to find a string using a caseinsensitive search, it actually creates a lowercase copy of both the haystack and the needle, and then performs a more traditional case-sensitive search to find the relative offset. After the offset of the string has been located, however, it no longer has use for the lowercase versions of the haystack and needle strings. If it didn't free these copies, then every script that used stristr() would leak some memory every time it was called. Eventually the web server process would own all the system memory, but not be able to use it.

The ideal solution, I can hear you shouting, is to write good, clean, consistent code, and that's absolutely true. In an environment like the PHP interpreter, however, that's only half the solution.

Error Handling

In order to provide the ability to bail out of an active request to userspace scripts and the extension functions they rely on, a means needs to exist to jump out of an active request entirely. The way this is handled within the Zend Engine is to set a bailout address at the beginning of a request, and then on any die() or exit() call, or on encountering any critical error (E_ERROR) perform a longjmp() to that bailout address.

Although this bailout process simplifies program flow, it almost invariably means that resource cleanup code (such as free() calls) will be skipped and memory could get leaked. Consider this simplified version of the engine code that handles function calls:

void call_function(const char *fname, int fname_len TSRMLS_DC)
{
    zend_function *fe;
    char *lcase_fname;
    /* PHP function names are case-insensitive
     * to simplify locating them in the function tables
     * all function names are implicitly
     * translated to lowercase
     */
    lcase_fname = estrndup(fname, fname_len);
    zend_str_tolower(lcase_fname, fname_len);

    if (zend_hash_find(EG(function_table),
            lcase_fname, fname_len + 1, (void **)&fe) == FAILURE) {
        zend_execute(fe->op_array TSRMLS_CC);
    } else {
        php_error_docref(NULL TSRMLS_CC, E_ERROR,
                         "Call to undefined function: %s()", fname);
    }
    efree(lcase_fname);
}

When the php_error_docref() line is encountered, the internal error handler sees that the error level is critical and invokes longjmp() to interrupt the current program flow and leave call_function() without ever reaching the efree(lcase_fname) line. Again, you're probably thinking that the efree() line could just be moved above the zend_error() line, but what about the code that called this call_function() routine in the first place? Most likely fname itself was an allocated string and you can't free that before it has been used in the error message.

Zend Memory Manager

The solution to memory leaks during request bailout is the Zend Memory Management (ZendMM) layer. This portion of the engine acts in much the same way the operating system would normally act, allocating memory to calling applications. The difference is that it is low enough in the process space to be request-aware so that when one request dies, it can perform the same action the OS would perform when a process dies. That is, it implicitly frees all the memory owned by that request. Figure 3.1 shows ZendMM in relation to the OS and the PHP process.

03fig01.gif

Figure 3.1 Zend Memory Manager replaces system calls for per-request allocations.

In addition to providing implicit memory cleanup, ZendMM also controls the perrequest memory usage according to the php.ini setting: memory_limit. If a script attempts to ask for more memory than is available to the system as a whole, or more than is remaining in its per-request limit, ZendMM will automatically issue an E_ERROR message and begin the bailout process. An added benefit of this is that the return value of most memory allocation calls doesn't need to be checked because failure results in an immediate longjmp() to the shutdown part of the engine.

Hooking itself in between PHP internal code and the OS's actual memory management layer is accomplished by nothing more complex than requiring that all memory allocated internally is requested using an alternative set of functions. For example, rather than allocate a 16-byte block of memory using malloc(16), PHP code will use emalloc(16). In addition to performing the actual memory allocation task, ZendMM will flag that block with information concerning what request it's bound to so that when a request bails out, ZendMM can implicitly free it.

Often, memory needs to be allocated for longer than the duration of a single request. These types of allocations, called persistent allocations because they persist beyond the end of a request, could be performed using the traditional memory allocators because these do not add the additional per-request information used by ZendMM. Sometimes, however, it's not known until runtime whether a particular allocation will need to be persistent or not, so ZendMM exports a set of helper macros that act just like the other memory allocation functions, but have an additional parameter at the end to indicate persistence.

If you genuinely want a persistent allocation, this parameter should be set to one, in which case the request will be passed through to the traditional malloc() family of allocators. If runtime logic has determined that this block does not need to be persistent however, this parameter may be set to zero, and the call will be channeled to the perrequest memory allocator functions.

For example, pemalloc(buffer_len, 1) maps to malloc(buffer_len), whereas pemalloc(buffer_len, 0) maps to emalloc(buffer_len) using the following

#define in Zend/zend_alloc.h:

#define pemalloc(size, persistent)             ((persistent)?malloc(size): emalloc(size))

Each of the allocator functions found in ZendMM can be found below along with their more traditional counterparts.

Table 3.1 shows each of the allocator functions supported by ZendMM and their e/pe counterparts:

Table 3.1. Traditional versus PHP-specific allocators

Allocator funtion

e/pe counterpart

void *malloc(size_t count);

void *emalloc(size_t count);

void *pemalloc(size_t count, char persistent);

void *calloc(size_t count);

void *ecalloc(size_t count);

void *pecalloc(size_t count, char persistent);

void *realloc(void *ptr, size_t count);

void *erealloc(void *ptr, size_t count);

void *perealloc(void *ptr, size_t count, char persistent);

void *strdup(void *ptr);

void *estrdup(void *ptr);

void *pestrdup(void *ptr, char persistent);

void free(void *ptr);

void efree(void *ptr);

void pefree(void *ptr, char persistent);

You'll notice that even pefree() requires the persistency flag. This is because at the time that pefree() is called, it doesn't actually know if ptr was a persistent allocation or not. Calling free() on a non-persistent allocation could lead to a messy double free, whereas calling efree() on a persistent one will most likely lead to a segmentation fault as the memory manager attempts to look for management information that doesn't exist. Your code is expected to remember whether the data structure it allocated was persistent or not.

In addition to the core set of allocator functions, a few additional and quite handy ZendMM specific functions exist:

void *estrndup(void *ptr, int len);

Allocate len+1 bytes of memory and copy len bytes from ptr to the newly allocated block. The behavior of estrndup() is roughly the following:

void *estrndup(void *ptr, int len)
{
    char *dst = emalloc(len + 1);
    memcpy(dst, ptr, len);
    dst[len] = 0;
    return dst;
}

The terminating NULL byte implicitly placed at the end of the buffer here ensures that any function that uses estrndup() for string duplication doesn't need to worry about passing the resulting buffer to a function that expects NULL terminated strings such as printf(). When using estrndup() to copy non-string data, this last byte is essentially wasted, but more often than not, the convenience outweighs the minor inefficiency.

void *safe_emalloc(size_t size, size_t count, size_t addtl);
void *safe_pemalloc(size_t size, size_t count, size_t addtl, char persistent);

The amount of memory allocated by these functions is the result of ((size * count) + addtl). You may be asking, "Why an extra function at all? Why not just use emalloc/pemalloc and do the math myself?"The reason comes in the name: safe. Although the circumstances leading up to it would be exceedingly unlikely, it's possible that the end result of such an equation might overflow the integer limits of the host platform. This could result in an allocation for a negative number of bytes, or worse, a positive number that is significantly smaller than what the calling program believed it requested. safe_emalloc() avoids this type of trap by checking for integer overflow and explicitly failing if such an overflow occurs.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020