Home > Articles > Web Development

📄 Contents

  1. Sams Teach Yourself SQL in 24 Hours, Third Edition
  2. Table of Contents
  3. Copyright
  4. About the Authors
  5. Acknowledgments
  6. Tell Us What You Think!
  7. Introduction
  8. Part I: A SQL Concepts Overview
  9. Hour 1. Welcome to the World of SQL
  10. SQL Definition and History
  11. SQL Sessions
  12. Types of SQL Commands
  13. An Introduction to the Database Used in This Book
  14. Summary
  15. Q&A
  16. Workshop
  17. Part II: Building Your Database
  18. Hour 2. Defining Data Structures
  19. What Is Data?
  20. Basic Data Types
  21. Summary
  22. Q&A
  23. Workshop
  24. Hour 3. Managing Database Objects
  25. What Are Database Objects?
  26. What Is a Schema?
  27. A Table: The Primary Storage for Data
  28. Integrity Constraints
  29. Summary
  30. Q&A
  31. Workshop
  32. Hour 4. The Normalization Process
  33. Normalizing a Database
  34. Summary
  35. Q&A
  36. Workshop
  37. Hour 5. Manipulating Data
  38. Overview of Data Manipulation
  39. Populating Tables with New Data
  40. Updating Existing Data
  41. Deleting Data from Tables
  42. Summary
  43. Q&A
  44. Workshop
  45. Hour 6. Managing Database Transactions
  46. What Is a Transaction?
  47. What Is Transactional Control?
  48. Transactional Control and Database Performance
  49. Summary
  50. Q&A
  51. Workshop
  52. Part III: Getting Effective Results from Queries
  53. Hour 7. Introduction to the Database Query
  54. What Is a Query?
  55. Introduction to the <tt>SELECT</tt> Statement
  56. Examples of Simple Queries
  57. Summary
  58. Q&amp;A
  59. Workshop
  60. Hour 8. Using Operators to Categorize Data
  61. What Is an Operator in SQL?
  62. Comparison Operators
  63. Logical Operators
  64. Conjunctive Operators
  65. Negating Conditions with the <tt>NOT</tt> Operator
  66. Arithmetic Operators
  67. Summary
  68. Q&amp;A
  69. Workshop
  70. Hour 9. Summarizing Data Results from a Query
  71. What Are Aggregate Functions?
  72. Summary
  73. Q&amp;A
  74. Workshop
  75. Hour 10. Sorting and Grouping Data
  76. Why Group Data?
  77. The <tt>GROUP BY</tt> Clause
  78. <tt>GROUP BY</tt> Versus <tt>ORDER BY</tt>
  79. The <tt>HAVING</tt> Clause
  80. Summary
  81. Q&amp;A
  82. Workshop
  83. Hour 11. Restructuring the Appearance of Data
  84. The Concepts of ANSI Character Functions
  85. Various Common Character Functions
  86. Miscellaneous Character Functions
  87. Mathematical Functions
  88. Conversion Functions
  89. The Concept of Combining Character Functions
  90. Summary
  91. Q&amp;A
  92. Workshop
  93. Hour 12. Understanding Dates and Times
  94. How Is a Date Stored?
  95. Date Functions
  96. Date Conversions
  97. Summary
  98. Q&amp;A
  99. Workshop
  100. Part IV: Building Sophisticated Database Queries
  101. Hour 13. Joining Tables in Queries
  102. Selecting Data from Multiple Tables
  103. Types of Joins
  104. Join Considerations
  105. Summary
  106. Q&amp;A
  107. Workshop
  108. Hour 14. Using Subqueries to Define Unknown Data
  109. What Is a Subquery?
  110. Embedding a Subquery Within a Subquery
  111. Summary
  112. Q&A
  113. Workshop
  114. Hour 15. Combining Multiple Queries into One
  115. Single Queries Versus Compound Queries
  116. Why Would I Ever Want to Use a Compound Query?
  117. Compound Query Operators
  118. Using an <tt>ORDER BY</tt> with a Compound Query
  119. Using <tt>GROUP BY</tt> with a Compound Query
  120. Retrieving Accurate Data
  121. Summary
  122. Workshop
  123. Q&amp;A
  124. Part V: SQL Performance Tuning
  125. Hour 16. Using Indexes to Improve Performance
  126. What Is an Index?
  127. How Do Indexes Work?
  128. The <tt>CREATE INDEX</tt> Command
  129. Types of Indexes
  130. When Should Indexes Be Considered?
  131. When Should Indexes Be Avoided?
  132. Summary
  133. Q&amp;A
  134. Workshop
  135. Hour 17. Improving Database Performance
  136. What Is SQL Statement Tuning?
  137. Database Tuning Versus SQL Tuning
  138. Formatting Your SQL Statement
  139. Full Table Scans
  140. Other Performance Considerations
  141. Performance Tools
  142. Summary
  143. Q&amp;A
  144. Workshop
  145. Part VI: Using SQL to Manage Users and Security
  146. Hour 18. Managing Database Users
  147. Users Are the Reason
  148. The Management Process
  149. Tools Utilized by Database Users
  150. Summary
  151. Q&amp;A
  152. Workshop
  153. Hour 19. Managing Database Security
  154. What Is Database Security?
  155. How Does Security Differ from User Management?
  156. What Are Privileges?
  157. Controlling User Access
  158. Controlling Privileges Through Roles
  159. Summary
  160. Q&amp;A
  161. Workshop
  162. Part VII: Summarized Data Structures
  163. Hour 20. Creating and Using Views and Synonyms
  164. What Is a View?
  165. Creating Views
  166. Dropping a View
  167. What Is a Synonym?
  168. Summary
  169. Q&amp;A
  170. Workshop
  171. Hour 21. Working with the System Catalog
  172. What Is the System Catalog?
  173. How Is the System Catalog Created?
  174. What Is Contained in the System Catalog?
  175. Examples of System Catalog Tables by Implementation
  176. Querying the System Catalog
  177. Updating System Catalog Objects
  178. Summary
  179. Q&amp;A
  180. Workshop
  181. Part VIII: Applying SQL Fundamentals in Today's World
  182. Hour 22. Advanced SQL Topics
  183. Advanced Topics
  184. Cursors
  185. Stored Procedures and Functions
  186. Triggers
  187. Dynamic SQL
  188. Call-Level Interface
  189. Using SQL to Generate SQL
  190. Direct Versus Embedded SQL
  191. Summary
  192. Q&amp;A
  193. Workshop
  194. Hour 23. Extending SQL to the Enterprise, the Internet, and the Intranet
  195. SQL and the Enterprise
  196. Accessing a Remote Database
  197. Accessing a Remote Database Through a Web Interface
  198. SQL and the Internet
  199. SQL and the Intranet
  200. Summary
  201. Q&amp;A
  202. Workshop
  203. Hour 24. Extensions to Standard SQL
  204. Various Implementations
  205. Examples of Extensions from Some Implementations
  206. Interactive SQL Statements
  207. Summary
  208. Q&amp;A
  209. Workshop
  210. Part IX: Appendixes
  211. Appendix A. Common SQL Commands
  212. SQL Statements
  213. SQL Clauses
  214. Appendix B. Using MySQL for Exercises
  215. Windows Installation Instructions
  216. Linux Installation Instructions
  217. Appendix C. Answers to Quizzes and Exercises
  218. Hour 1, "Welcome to the World of SQL"
  219. Hour 2, "Defining Data Structures"
  220. Hour 3, "Managing Database Objects"
  221. Hour 4, "The Normalization Process"
  222. Hour 5, "Manipulating Data"
  223. Hour 6, "Managing Database Transactions"
  224. Hour 7, "Introduction to the Database Query"
  225. Hour 8, "Using Operators to Categorize Data"
  226. Hour 9, "Summarizing Data Results from a Query"
  227. Hour 10, "Sorting and Grouping Data"
  228. Hour 11, "Restructuring the Appearance of Data"
  229. Hour 12, "Understanding Dates and Time"
  230. Hour 13, "Joining Tables in Queries"
  231. Hour 14, "Using Subqueries to Define Unknown Data"
  232. Hour 15, "Combining Multiple Queries into One"
  233. Hour 16, "Using Indexes to Improve Performance"
  234. Hour 17, "Improving Database Performance"
  235. Hour 18, "Managing Database Users"
  236. Hour 19, "Managing Database Security"
  237. Hour 20, "Creating and Using Views and Synonyms"
  238. Hour 21, "Working with the System Catalog"
  239. Hour 22, "Advanced SQL Topics"
  240. Hour 23, "Extending SQL to the Enterprise, the Internet, and the Intranet"
  241. Hour 24, "Extensions to Standard SQL"
  242. Appendix D. <tt>CREATE TABLE</tt> Statements for Book Examples
  243. <tt>EMPLOYEE_TBL</tt>
  244. <tt>EMPLOYEE_PAY_TBL</tt>
  245. <tt>CUSTOMER_TBL</tt>
  246. <tt>ORDERS_TBL</tt>
  247. <tt>PRODUCTS_TBL</tt>
  248. Appendix E. <tt>INSERT</tt> Statements for Data in Book Examples
  249. <tt>INSERT</tt> Statements
  250. Appendix F. Glossary
  251. Appendix G. Bonus Exercises
Recommended Book

Basic Data Types

The following sections discuss the basic data types supported by ANSI SQL. Data types are characteristics of the data itself, whose attributes are placed on fields within a table. For example, you can specify that a field must contain numeric values, disallowing the entering of alphanumeric strings. After all, you would not want to enter alphabetic characters in a field for a dollar amount. Defining each field in the database with a data type eliminates much of the incorrect data found in a database due to data entry errors. Field definition (data type definition) is a form of data validation, which controls the type of data that may be entered into each given field.

The very basic data types, as with most other languages, are

  • Character strings
  • Numeric strings
  • Date and time values

Fixed-Length Characters

newterm_icon.gif

Constant characters, those strings that always have the same length, are stored using a fixed-length data type. The following is the standard for an SQL fixed-length character:

CHARACTER(n) 

n represents a number identifying the allocated, or maximum length of the particular field with this definition.

Some implementations of SQL use the CHAR data type to store fixed-length data. Alphanumeric data can be stored in this data type. An example of a constant length data type would be for a state abbreviation because all state abbreviations are two characters.

Spaces are normally used to fill extra spots when using a fixed-length data type; if a field's length was set to 10 and data entered filled only five places, the remaining five spaces are recorded as spaces. The padding of spaces ensures that each value in a field is a fixed length.

Variable Characters

newterm_icon.gif

SQL supports the use of varying-length strings, strings whose length is not constant for all data. The following is the standard for a SQL varying-length character:

CHARACTER VARYING(n) 

n represents a number identifying the allocated, or maximum length of the particular field with this definition.

Common data types for variable-length character values are the VARCHAR and VARCHAR2 data types. VARCHAR is the ANSI standard, which Microsoft SQL Server and MySQL use; both VARCHAR and VARCHAR2 are used by Oracle. The data stored in a character-defined column can be alphanumeric, which means that the data value may contain numeric characters.

Remember that fixed-length data types typically pad spaces to fill in allocated places not used by the field. The varying-length data type does not work this way. For instance, if the allocated length of a varying-length field is 10, and a string of five characters is entered, the total length of that particular value is only 5. Spaces are not used to fill unused places in a column.

Numeric Values

Numeric values are stored in fields that are defined as some type of number, typically referred to as NUMBER, INTEGER, REAL, DECIMAL, and so on.

The following are the standards for SQL numeric values:

BIT(n) 
BIT VARYING(n)
DECIMAL(p,s)
INTEGER
SMALLINT
FLOAT(p)
   REAL(s)

DOUBLE PRECISION(P)

p represents a number identifying the allocated, or maximum length of the particular field for each appropriate definition.

s is a number to the right of the decimal point, such as 34.ss.

A common numeric data type in SQL implementations is NUMBER, which accommodates the direction for numeric values provided by ANSI. Numeric values can be stored as zero, positive, negative, fixed, and floating-point numbers. The following is an example using NUMBER:

NUMBER(5) 

This example restricts the maximum value entered in a particular field to 99999.

Decimal Values

Decimal values are numeric values that include the use of a decimal point. The standard for a decimal in SQL follows, where the p is the precision and the s is the decimal's scale:

DECIMAL(p,s) 

newterm_icon.gif

The precision is the total length of the numeric value. In a numeric defined DECIMAL(4,2), the precision is 4, which is the total length allocated for a numeric value.

newterm_icon.gif

The scale is the number of digits to the right of the decimal point. The scale is 2 in the previous DECIMAL(4,2) example.

34.33 inserted into a DECIMAL(3,1) is typically rounded to 34.3.

If a numeric value was defined as the following data type, the maximum value allowed would be 99.99:

DECIMAL(4,2) 

newterm_icon.gif

The precision is 4, which represents the total length allocated for an associated value. The scale is 2, which represents the number of places, or bytes, reserved to the right side of the decimal point. The decimal point itself does not count as a character.

Allowed values for a column defined as DECIMAL(4,2) include the following:

12
12.4
12.44
12.449

The last numeric value, 12.449, is rounded off to 12.45 upon input into the column. In this case, any numbers between 12.445 and 12.449 would be rounded to 12.45.

Integers

newterm_icon.gif

An integer is a numeric value that does not contain a decimal, only whole numbers (both positive and negative).

Valid integers include the following:

1
0
-1
99
-99
199

Floating-Point Decimals

newterm_icon.gif

Floating-point decimals are decimal values whose precision and scale are variable lengths and virtually without limit. Any precision and scale is acceptable. The REAL data type designates a column with single-precision, floating-point numbers. The DOUBLE PRECISION data type designates a column that contains double-precision, floating-point numbers. To be considered a single-precision floating point, the precision must be between 1 and 21 inclusive. To be considered a double-precision floating point, the precision must be between 22 and 53 inclusive. The following are examples of the FLOAT data type:

FLOAT 
FLOAT(15)
FLOAT(50)

Dates and Time

Date and time data types are quite obviously used to keep track of information concerning dates and time. Standard SQL supports what are called DATETIME data types, which include the following specific data types:

DATE 
TIME
INTERVAL
TIMESTAMP

The elements of a DATETIME data type consist of the following:

YEAR 
MONTH
DAY
HOUR
MINUTE
SECOND

Be aware that each implementation of SQL may have its own customized data type for dates and times. The previous data types and elements are standards to which each SQL vendor should adhere, but be advised that most implementations have their own data type for date values, varying in both appearance and the way date information is actually stored internally.

A length is not normally specified for a date data type. Later in this hour, you learn more about dates, how date information is stored in some implementations, how to manipulate dates and times using conversion functions, and study practical examples of how dates and time are used in the real world.

Literal Strings

newterm_icon.gif

A literal string is a series of characters, such as a name or a phone number, that is explicitly specified by a user or program. Literal strings consist of data with the same attributes as the previously discussed data types, but the value of the string is known; the value of a column itself is usually unknown, because there is typically a different value for a column associated with each row of data in a table.

You do not actually specify data types with literal strings—you simply specify the string. Some examples of literal strings follow:

'Hello' 
45000
"45000"
3.14
'November 1, 1997'

The alphanumeric strings are enclosed by single quotation marks, whereas the number value 45000 is not. Also notice that the second numeric value of 45000 is enclosed by quotation marks. Generally speaking, character strings require quotation marks, whereas numeric strings don't. You see later how literal strings are used with database queries.

NULL Data Types

As you should know from Hour 1, a NULL value is a missing value or a column in a row of data that has not been assigned a value. NULL values are used in nearly all parts of SQL, including the creation of tables, search conditions for queries, and even in literal strings.

The following are two methods for referencing a NULL value:

  • NULL (the keyword NULL itself)
  • '' (single quotation marks with nothing in between)

The following does not represent a NULL value, but a literal string containing the characters N-U-L-L:

'NULL' 

When using the NULL data type, it is important to realize that data is not required in a particular field. If data is always required for a given field, always use NOT NULL with a data type. If there is a chance that there may not always be data for a field, then it is better to use NULL.

BOOLEAN Values

A BOOLEAN value is a value of either TRUE, FALSE, or NULL. BOOLEAN values are used to make data comparisons. For example, when criteria are specified for a query, each condition evaluates to either a TRUE, FALSE, or NULL. If the BOOLEAN value of TRUE is returned by all conditions in a query, data is returned. If a BOOLEAN value of FALSE or NULL is returned, data may not be returned.

Consider the following example:

WHERE NAME = 'SMITH' 

This line might be a condition found in a query. The condition is evaluated for every row of data in the table that is being queried. If the value of NAME is SMITH for a row of data in the table, the condition returns the value TRUE, thereby returning the data associated with that record.

User-Defined Types

newterm_icon.gif

A user-defined type is a data type that is defined by the user. User-defined types allow users to customize their own data types to meet data storage needs. They are based on existing data types. User-defined data types can assist the developer by providing greater flexibility during database application development, because they maximize the number of possibilities for data storage. The CREATE TYPE statement is used to create a user-defined type.

For example, you can create a type as follows:

   mysql_icon.gif
CREATE TYPE PERSON AS OBJECT
(NAME       VARCHAR (30),
 SSN        VARCHAR (9));

You can reference your user-defined type as follows:

   mysql_icon.gif
CREATE TABLE EMP_PAY
(EMPLOYEE   PERSON,
 SALARY     DECIMAL(10,2),
 HIRE_DATE  DATE);

Notice that the data type referenced for the first column EMPLOYEE is PERSON. PERSON is the user-defined type you created in the first example.

Domains

newterm_icon.gif

A domain is a set of valid data types that can be used. A domain is associated with a data type, so that only certain data is accepted. After a domain is created, you can add constraints to the domain. Constraints work in conjunction with data types, allowing you to further specify acceptable data for a field. The domain is used like the user-defined type.

You can create a domain as follows:

   mysql_icon.gif
CREATE DOMAIN MONEY_D AS NUMBER(8,2);

You can add constraints to your domain as follows:

   mysql_icon.gif
ALTER DOMAIN MONEY_D
ADD CONSTRAINT MONEY_CON1
 CHECK (VALUE > 5);

You can reference the domain as follows:

   mysql_icon.gif
CREATE TABLE EMP_PAY
(EMP_ID        NUMBER(9),
  EMP_NAME      VARCHAR2(30),
  PAY_RATE      MONEY_D);

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020