Home > Articles > Security > Network Security

Tamper Mechanisms

The goal of tamper mechanisms is to prevent any attempt by an attacker to perform an unauthorized physical or electronic action against the device. Tamper mechanisms are divided into four groups:

  • Resistance

  • Evidence

  • Detection

  • Response

Tamper mechanisms are most effectively used in layers to prevent access to any critical components. They are the primary facet of physical security for embedded systems and must be properly implemented to be successful. From the designer's perspective, the costs of a successful attack should outweigh the potential rewards.

Often, existing tamper mechanisms can only be discovered by attempted or complete disassembly of the target product. This may require an attacker to obtain more than one device in order to sacrifice one for the sole purpose of discovering such mechanisms. Once the mechanisms are noted, an adversary can form hypotheses about how to attack and bypass them.

Weingart's "Physical Security Devices for Computer Subsystems: A Survey of Attacks and Defenses" [2] describes physical tamper mechanism attacks and defenses ranging from cheap and easy to extremely costly and complex. It is a comprehensive guide to many (if not all) known attack types and provides lists of solutions to implement to protect against such attacks. Physical attacks include different types of probing (passive, active/injector, pico-probes, or energy); machining methods (manual material removal, mechanical, water, laser, chemical, or shaped charge); and electrical (radiation imprinting, temperature imprinting, high voltage imprinting, power supply fluctuations, clock glitching, circuit disruption, or electron beam and infrared laser read/write). Corresponding countermeasures for these attacks are described, including various types of physical barriers (hard barriers, single chip coatings, or insulator-based substrates); tamper evident solutions (brittle packages, crazed aluminum, polished packages, bleeding paint, or holographic tape); tamper detection sensors (voltage, probe, wire, printed circuit board, flex, stressed glass, piezo-electric, motion, ultrasonic, microwave, infrared, acceleration, radiation, flux, dosage, or temperature); and tamper response technologies (RAM power drop, RAM overwrite, or physical destruction).

Tamper Resistance

Tamper resistance consists of using specialized materials to make tampering of a device or module difficult. This can include such features as hardened steel enclosures, locks, encapsulation, or security screws. Implementing tight airflow channels (that is, tightly packing the components and circuit boards within the enclosure) will increase the difficulty of optical probing of the product internals using fiber optics. A side benefit of many tamper resistant mechanisms is that they are often tamper evident, meaning that physical changes can be visually observed and it becomes obvious that the product has been tampered with.

If designing a housing that requires screws, or when retrofitting a design that is already using screws, consider implementing one-way screws that will offer additional tamper resistance. Although an adversary can likely drill through such screws, they raise the difficulty of attack over an industry-standard screwdriver or Torx driver bit. The Thomas Register Directory provides a large listing of security- and tamperproof-screw manufacturers and suppliers.

Sealing both sides of the housing together in a way that requires the destruction of the device in order to open it should be considered. Many plastics are sensitive to heat and melt at fairly low temperatures. Consider sealing the housing with high-temperature glue or ultrasonic welding to reduce tampering. If using high-temperature glue, choose one with a higher softening point than the plastic housing in order to increase visible tamper evidence. Serviceability may be an issue if the product is intended to be opened by authorized personnel. However, if a legitimate user can open the device, so can an adversary can.

An entire circuit board with resistant resin or epoxy compound can protect the circuitry. However, it is more common for such encapsulation to be done on only specific critical components. Conformal coatings and encapsulates are typically used to protect an assembled circuit board from moisture, fungus, dust, corrosion, or tampering. It can also reduce mechanical stress on components and protect them from thermal shock. Urethane provides a hard, durable coating that offers excellent abrasion and solvent resistance. It shrinks significantly during coating, however, which may stress components. Epoxies also offer excellent resistance to moisture and solvents. Usually consisting of a two-part thermosetting resin, the coating also shrinks during curing, leaving a hard, difficult-to-remove film. Conformal coatings are provided by a large number of manufacturers, including GE Silicones, Dow Corning, and MG Chemicals.

Chemicals such as methylene chloride, sulfuric acid, and fuming nitric acid can remove protective coatings, so be sure to evaluate that your chosen compound is suitable for your desired protection level. To protect against a chemical attack that removes the encapsulation, aluminum powder can be added to the compound. A solvent capable of dissolving the aluminum will corrode the underlying components or circuitry, rendering the device useless.

Tamper Evidence

The goal of tamper evidence is to ensure that visible evidence is left behind when tampering occurs. Tamper evident mechanisms are a major deterrent for minimal risk takers (e.g., non-determined attackers). Hundreds of tamper evident materials and devices are available, mostly consisting of special seals and tapes to make it obvious that there has been physical tampering.

Tamper evidence features are only successful if a process is in place to check whether tampering has occurred or if a legitimate owner of the device notices a deformity. Generally speaking, if an adversary purchases a product with the specific intention of attacking it, tamper evident mechanisms by themselves will not prevent the attack.

Weingart's "Physical Security Devices for Computer Subsystems: A Survey of Attacks and Defenses" [2] provides dozens of potential tamper evident mechanisms to employ. Most (if not all) of the available tamper evident seals can be bypassed. In Johnston and Garcia's "Vulnerability Assessment of Security Seals," [3] the authors show how 94 different security seals (including adhesive tape, plastic, wire loop, metal cable, metal ribbon, bolt type, secure container, passive fiber optic, and electronic) were defeated using low-cost tools and readily available supplies.

Holdtite manufactures Secure 42, superglue intended to provide evidence of tampering. Brittle plastics or enclosures that crack or shatter upon an attempted penetration may be suitable in certain environments. "Bleeding" paint, where paint of one color is mixed with tiny spheres of a contrasting color paint that rupture when the surface is scratched, is a novel solution.

Tamper Detection

Tamper detection mechanisms enable the hardware device to be aware of tampering and typically fall into one of three groups:

  • Switches such as microswitches, magnetic switches, mercury switches, and pressure contacts to detect the opening of a device, the breach of a physical security boundary, or the movement of a particular component.

  • Sensors such as temperature and radiation sensors to detect environmental changes, voltage and power sensors to detect glitch attacks, radiation sensors for X-rays (used for seeing what is inside of a sealed or encapsulated device) and ion beams (often used for advanced attacks to focus on specific electrical gates within an integrated circuit).

  • Circuitry such as flexible circuitry, nichrome wire, and fiber optics wrapped around critical circuitry or specific components on the board. These materials are used to detect a puncture, break, or attempted modification of the wrapper. For example, if the resistance of the nichrome wire changes or the light power traveling through the optical cable decreases, the system can assume there has been physical tampering.

Again, Weingart's "Physical Security Devices for Computer Subsystems: A Survey of Attacks and Defenses" [2] provides a comprehensive list of specific mechanisms that could be employed.

Tamper Response

Tamper response mechanisms are the countermeasures taken upon the detection of tampering. Chaum's 1983 "Design Concepts for Tamper Responding Systems" [4] presents concepts for implementing sensors into tamper responsive systems.

Most often, the response consists of completely shutting down or disabling the device, or erasing critical portions of memory to prevent an attacker from accessing secret data. Physical destruction of a device using a small explosive charge may be an option for extremely secure devices, but is not practical for most (if any) consumer electronics. Response mechanisms may also be simpler, such as just logging the type of attack detected and the time it occurred, which can provide useful audit information and help with forensic analysis after an attack.

Simply erasing critical portions of memory (also known as "zeroizing") is usually not enough, however, as shown by Gutmann's "Secure Deletion of Data from Magnetic and Solid-State Memory" [5] and "Data Remanence in Semiconductor Devices," [6] along with Skorobogatov's "Low Temperature Data Remanence in Static RAM." [7] Gutmann observes that "contrary to conventional wisdom, volatile semiconductor memory does not entirely lose its contents when power is removed. Both static (SRAM) and dynamic (DRAM) memory retains some information."

W.L. Gore's D3 electronic security enclosures are designed to protect the physical security boundary of a module and combine a number of tamper evidence and detection features. The sensor comes as a foldable sheet that is to be wrapped around the product. Conductive ink crisscrosses through the sheet with a maximum distance between traces of 200 to 300 microns (a pitch too small to be drilled through without detection). The electrical state of the sensor changes if the field is broken, which will trigger the product to enable its tamper respondent mechanisms. Gore claims that the device is transparent to X-rays (which may be used to determine the location of the sensor within the product) and that it has been tested against a wide range of reagents and solvents. The outer layer has an opaque resin coating, which conceals all surface details of the sensor and prevents an attacker from seeing any traces. This product also meets the requirements of FIPS 140 Level 4 Specification for Cryptographic Modules. [8]

Tamper response mechanisms are unlikely to trigger accidentally. Still, the legitimate user will need to understand the environmental and operational conditions and keep the device within those limits. Many tamper-responsive devices are designed and manufactured with the stipulation that they will never be opened—legitimately or not.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020