1.5 Ethics
Engineering ethics is a collection of moral principles applied in engineering practice. Put simply, engineering ethics is the rules of fair play that engineers operate under while serving the public, their employer, the client, and the profession. Engineering offers great potential for contributing to the public good, but at the same time, it can cause great harm if it is not applied correctly and ethically.
Around the turn of the twentieth century after the Industrial Revolution, engineers were playing a major role by contributing to manufacturing and the infrastructure for transportation. When structural failures caused by technical errors, construction problems, and ethical issues created major disasters [(e.g., Ashtabula River Railroad Disaster (1876), Tay Bridge Disaster (1879), Quebec Bridge Collapse (1907), and the Boston Molasses Flood (1919)], a number of the engineering societies adopted formal codes of ethics. These codes made it clear that engineers were responsible for protecting the safety of the public. In 1946, the National Society of Professional Engineers released the Canons of Ethics for Engineers and the Rules for Professional Conduct, which have evolved into the code of engineering ethics used today. Engineering ethics has become even more complicated today due to different cultural traditions encountered in global trade and when dealing with political corruption, environmental issues, and sustainability issues.
Arthur C. Little, who was a famous design engineer, once said, “Any sufficiently advanced technology is indistinguishable from magic.” The engineering profession must thus use its magic wisely.
1.5.1 The Engineering Profession
A profession is a paid occupation that requires special education, training, or skills. Professions are known to evolve through a series of stages: the craft stage, the commercial stage, and the professional stage. The craft stage involves individuals who use common sense, intuition, and brute force to accomplish a task (e.g., building a bridge). As the demand for the task increases, the commercial stage develops and uses practitioners who use trial-and-error methods to improve the consistency and quality of the product. When science catches up with practice, the professional stage begins, combining scientific understanding with practice. As a result, professional engineering practitioners must be trained in scientific theory as well as engineering practice.
Significantly important to the engineering profession are professional engineering societies. Each of the major fields of engineering has a national society [(e.g., the American Institute of Chemical Engineers (AIChE)]. In addition, there are other engineering societies, including the Society of Women Engineers (SWE), the American Society for Engineering Education (ASEE), the National Society of Black Engineers (NSBE), Tau Beta Pi Engineering Honor Society (TBP), and the National Society of Professional Engineers (NSPE). Each of these societies represents a group of engineers and affords a means of interacting with other engineers who share similar backgrounds and interests.
The engineering profession is different from other professions, such as medical doctors, dentists, accountants, and lawyers, because these professionals deal largely with individuals, while engineers work primarily with organizations, such as companies or governmental agencies. The state of a profession depends on those professionals who are engaged in its practice. Moreover, the reputation and/or image of a profession can have a direct effect on the members of that profession. The future reputation of the engineering profession will depend on how technically well and ethically you perform your job as an engineer. Therefore, when you become an engineer, you accept the responsibility to improve or at least maintain the reputation of the engineering profession for those who will follow you.
1.5.2 Codes of Ethics
A number of ethics codes have been developed by engineering societies. Put simply, engineering ethics boils down to being fair and honest while performing your duties for your employer and client but ultimately protecting the interests of the public. That is, the public health, welfare, and safety supersede the interest of the employer and the client. If you are aware of a public safety issue, you are required by ethics codes to see that it is corrected or that the proper authorities are notified. In addition, engineers should work only on projects for which they have the necessary education or experience. Remember that whenever you sign your name to a document, you are confirming the accuracy and validity of it with your reputation.
The challenge associated with being ethical occurs when taking the right action costs you. For example, imagine if, based on the course syllabus, you earned a grade of C in a course, but you actually received an A in the course due to a clerical error. It is not ethical to ignore the error and keep the A. For another example, consider that you are working as an engineer and for the first time have been asked to lead a project. Therefore, this project is a launching point for your career. After the project was completed and deemed a huge success, you realize that the whole basis of the project violates a patent that your company does not hold. If you point out the patent infringement to your boss, who designed the project in the first place, this can sabotage your career.
A conflict of interest can create a problem for an organization even if no wrongdoing occurs. A conflict of interest can be defined as a set of circumstances that creates a risk that a professional judgment or decision may be affected by a secondary interest—for example, if you were a grader for homework in a class and had to grade your best friend in this class. As a result, any potential conflict of interest should be disclosed to all parties by an engineer, and the parties should be left to decide if the potential conflict of interest is relevant.
Plagiarism is the use of someone else’s words, ideas, or other work (e.g., images, videos, and music) without referencing the original source. While many times plagiarism is not illegal, it is considered unethical in most organizations. Moreover, in universities, plagiarism is considered academic misconduct and can lead to disciplinary action. A number of software products are available to check for plagiarism, and many university professors routinely use them. Therefore, as an engineer, you should always be careful to reference the sources that you use for all work on which you place your name.
The primary portion of the fundamental canons of the code of ethics for the National Society of Professional Engineers (http://www.nspe.org/resources/ethics/code-ethics) follows:
I. Fundamental Canons
Engineers, in the fulfillment of their professional duties, shall:
Hold paramount the safety, health, and welfare of the public.
Perform services only in areas of their competence.
Issue public statements only in an objective and truthful manner.
Act for each employer or client as faithful agents or trustees.
Avoid deceptive acts.
Conduct themselves honorably, responsibly, ethically, and lawfully so as to enhance the honor, reputation, and usefulness of the profession.