- Introduction
- 1.1 A Brief History of Chemical Engineering
- 1.2 Types of Jobs Chemical Engineers Perform
- 1.3 Industries in Which Chemical Engineers Work
- 1.4 Sustainability
- Self-Assessment Test
- 1.5 Ethics
- Self-Assessment Test
- Summary
- Glossary
1.2 Types of Jobs Chemical Engineers Perform
Chemical engineers perform a wide range of jobs. Moreover, during your career, you are likely to have a number of different types of jobs. Following are the general types of jobs that chemical engineers perform:
Operations: Operations engineers, or process engineers, are the first line of technical support for a processing plant. These engineers spend a lot of their time in the plant monitoring the operations and solving operational problems. When a serious technical problem occurs in the middle of the night, the operations engineer for that process is called in to resolve the problem. Many young chemical engineers start out as operations engineers for a few years so that they can become familiar with plant operations before they move to other assignments. This job also provides companies a view of how young engineers handle responsibility as well as how effectively they are able to work with others.
Technical sales: Many products today are highly technical in nature and the consumer of these products often requires technical assistance to fully utilize them. Technical sales engineers provide that service as well as acquire new customers. Obviously, sales engineers need to be able to work effectively with their customers and to fully understand the technical issues associated with their company’s products in order to maintain customer satisfaction.
Design: Design is developing something new that meets a defined need and is used to develop new products and services, many times using teams of engineers. Design is a challenging endeavor because there is no limit to how many new ways something can be designed. Therefore, design requires creativity and experience. As a result, design teams often are made up of members with a wide range of experience and training. It is the design team’s job to determine the best design for a product considering technical feasibility, economic viability, and the definition of the need for the end user.
Consulting: Consulting companies specialize in specific areas of engineering—safety, design, control, and so on. When an operating company needs a consultant’s expertise, it simply contracts with the consulting company for the needed services. Because consulting companies provide technical services on an as-needed basis, the company that hires a consultant does not have to employ an expert in a particular field as a full-time employee. Consulting companies often hire engineers who have many years of engineering experience in specific technical areas. Individuals also serve as industrial consultants after years of experience in industry, academia, or government laboratories.
Project management: Project management engineers are similar to operations engineers in that they are called upon to provide a number of technical services for the day-to-day operation of a project (e.g., an expansion project for a process or the construction of a new process). Initially, these engineers are required to develop estimates of labor and material for the project, and this information is then used to receive approval for the project. The project management engineer is responsible for coordinating the project or a portion of the project when the project is approved. Coordinating the project requires working with a number of parties, e.g., the management team, the construction team, the suppliers, and the operations department in order to deliver a high-quality project on time and on budget.
Management: Corporate, operations, and technical: Many companies use chemical engineers for their corporate management because the position requires technical knowledge. Engineers who move into corporate management usually have training in business or have attended an MBA program. They normally work their way up the management ladder from technical management and operations management positions. Corporate management directs the business at the corporate level and deals with issues such as the corporate image, identifying new business opportunities, and deciding how to handle economic downturns, all in an effort to improve the overall profitability of the corporation. Operations management deals with the day-to-day problems and opportunities associated with operating an industrial production facility. Technical management is concerned with managing engineers who deal with operations, research, and development.
Development: Development teams work with design teams to apply various designs so that they can be further tested. During this phase, the real-world consequences of potential designs become apparent, and the development team is charged with solving these problems when possible. For a new process, a pilot-scale process can be constructed, operated, and monitored to evaluate the performance of the new process (e.g., to determine the activity and yield of a catalyst). In effect, development teams are asked to demonstrate whether a design concept is viable.
Research: Research is the scientific investigation of physical systems using laboratory experiments and/or computer simulations. Fundamental, or “blue-sky,” research studies the fundamental behavior of certain systems without regard to a specific industrial problem (e.g., studying the fundamental chemical reactions associated with a class of compounds). Industrial research is research aimed at solving an industrial problem (e.g., developing a new composite material that can be used in an industrial application). Whenever a technical issue has an important effect on society (e.g., developing green sources of energy), large amounts of government funding are usually offered to researchers, who explore and propose ways to solve these problems.
University teaching: Engineering professors typically have a PhD in engineering or a related field and divide their work effort between research, teaching, and service to the profession. Their research effort is based on fundamental studies of engineering systems, while their teaching relies on being able to effectively communicate abstract material and practical approaches to students in a way that the students can assimilate and apply this information. Engineering professors are evaluated for promotion and advancement on the basis of publications in peer-reviewed journals, their ability to develop research funding, their effectiveness as a teacher, and their contribution to the engineering profession. Being an engineering professor is a demanding profession because of the breadth of work the individual must perform, but it can be a very rewarding career to help young people along the path to becoming successful engineers.