- SQL Server Reference Guide
- Introduction
- SQL Server Reference Guide Overview
- Table of Contents
- Microsoft SQL Server Defined
- SQL Server Editions
- SQL Server Access
- Informit Articles and Sample Chapters
- Online Resources
- Microsoft SQL Server Features
- SQL Server Books Online
- Clustering Services
- Data Transformation Services (DTS) Overview
- Replication Services
- Database Mirroring
- Natural Language Processing (NLP)
- Analysis Services
- Microsot SQL Server Reporting Services
- XML Overview
- Notification Services for the DBA
- Full-Text Search
- SQL Server 2005 - Service Broker
- Using SQL Server as a Web Service
- SQL Server Encryption Options Overview
- SQL Server 2008 Overview
- SQL Server 2008 R2 Overview
- SQL Azure
- The Utility Control Point and Data Application Component, Part 1
- The Utility Control Point and Data Application Component, Part 2
- Microsoft SQL Server Administration
- The DBA Survival Guide: The 10 Minute SQL Server Overview
- Preparing (or Tuning) a Windows System for SQL Server, Part 1
- Preparing (or Tuning) a Windows System for SQL Server, Part 2
- Installing SQL Server
- Upgrading SQL Server
- SQL Server 2000 Management Tools
- SQL Server 2005 Management Tools
- SQL Server 2008 Management Tools
- SQL Azure Tools
- Automating Tasks with SQL Server Agent
- Run Operating System Commands in SQL Agent using PowerShell
- Automating Tasks Without SQL Server Agent
- Storage – SQL Server I/O
- Service Packs, Hotfixes and Cumulative Upgrades
- Tracking SQL Server Information with Error and Event Logs
- Change Management
- SQL Server Metadata, Part One
- SQL Server Meta-Data, Part Two
- Monitoring - SQL Server 2005 Dynamic Views and Functions
- Monitoring - Performance Monitor
- Unattended Performance Monitoring for SQL Server
- Monitoring - User-Defined Performance Counters
- Monitoring: SQL Server Activity Monitor
- SQL Server Instances
- DBCC Commands
- SQL Server and Mail
- Database Maintenance Checklist
- The Maintenance Wizard: SQL Server 2000 and Earlier
- The Maintenance Wizard: SQL Server 2005 (SP2) and Later
- The Web Assistant Wizard
- Creating Web Pages from SQL Server
- SQL Server Security
- Securing the SQL Server Platform, Part 1
- Securing the SQL Server Platform, Part 2
- SQL Server Security: Users and other Principals
- SQL Server Security – Roles
- SQL Server Security: Objects (Securables)
- Security: Using the Command Line
- SQL Server Security - Encrypting Connections
- SQL Server Security: Encrypting Data
- SQL Server Security Audit
- High Availability - SQL Server Clustering
- SQL Server Configuration, Part 1
- SQL Server Configuration, Part 2
- Database Configuration Options
- 32- vs 64-bit Computing for SQL Server
- SQL Server and Memory
- Performance Tuning: Introduction to Indexes
- Statistical Indexes
- Backup and Recovery
- Backup and Recovery Examples, Part One
- Backup and Recovery Examples, Part Two: Transferring Databases to Another System (Even Without Backups)
- SQL Profiler - Reverse Engineering An Application
- SQL Trace
- SQL Server Alerts
- Files and Filegroups
- Partitioning
- Full-Text Indexes
- Read-Only Data
- SQL Server Locks
- Monitoring Locking and Deadlocking
- Controlling Locks in SQL Server
- SQL Server Policy-Based Management, Part One
- SQL Server Policy-Based Management, Part Two
- SQL Server Policy-Based Management, Part Three
- Microsoft SQL Server Programming
- An Outline for Development
- Database
- Database Services
- Database Objects: Databases
- Database Objects: Tables
- Database Objects: Table Relationships
- Database Objects: Keys
- Database Objects: Constraints
- Database Objects: Data Types
- Database Objects: Views
- Database Objects: Stored Procedures
- Database Objects: Indexes
- Database Objects: User Defined Functions
- Database Objects: Triggers
- Database Design: Requirements, Entities, and Attributes
- Business Process Model Notation (BPMN) and the Data Professional
- Business Questions for Database Design, Part One
- Business Questions for Database Design, Part Two
- Database Design: Finalizing Requirements and Defining Relationships
- Database Design: Creating an Entity Relationship Diagram
- Database Design: The Logical ERD
- Database Design: Adjusting The Model
- Database Design: Normalizing the Model
- Creating The Physical Model
- Database Design: Changing Attributes to Columns
- Database Design: Creating The Physical Database
- Database Design Example: Curriculum Vitae
- NULLs
- The SQL Server Sample Databases
- The SQL Server Sample Databases: pubs
- The SQL Server Sample Databases: NorthWind
- The SQL Server Sample Databases: AdventureWorks
- The SQL Server Sample Databases: Adventureworks Derivatives
- UniversalDB: The Demo and Testing Database, Part 1
- UniversalDB: The Demo and Testing Database, Part 2
- UniversalDB: The Demo and Testing Database, Part 3
- UniversalDB: The Demo and Testing Database, Part 4
- Getting Started with Transact-SQL
- Transact-SQL: Data Definition Language (DDL) Basics
- Transact-SQL: Limiting Results
- Transact-SQL: More Operators
- Transact-SQL: Ordering and Aggregating Data
- Transact-SQL: Subqueries
- Transact-SQL: Joins
- Transact-SQL: Complex Joins - Building a View with Multiple JOINs
- Transact-SQL: Inserts, Updates, and Deletes
- An Introduction to the CLR in SQL Server 2005
- Design Elements Part 1: Programming Flow Overview, Code Format and Commenting your Code
- Design Elements Part 2: Controlling SQL's Scope
- Design Elements Part 3: Error Handling
- Design Elements Part 4: Variables
- Design Elements Part 5: Where Does The Code Live?
- Design Elements Part 6: Math Operators and Functions
- Design Elements Part 7: Statistical Functions
- Design Elements Part 8: Summarization Statistical Algorithms
- Design Elements Part 9:Representing Data with Statistical Algorithms
- Design Elements Part 10: Interpreting the Data—Regression
- Design Elements Part 11: String Manipulation
- Design Elements Part 12: Loops
- Design Elements Part 13: Recursion
- Design Elements Part 14: Arrays
- Design Elements Part 15: Event-Driven Programming Vs. Scheduled Processes
- Design Elements Part 16: Event-Driven Programming
- Design Elements Part 17: Program Flow
- Forming Queries Part 1: Design
- Forming Queries Part 2: Query Basics
- Forming Queries Part 3: Query Optimization
- Forming Queries Part 4: SET Options
- Forming Queries Part 5: Table Optimization Hints
- Using SQL Server Templates
- Transact-SQL Unit Testing
- Index Tuning Wizard
- Unicode and SQL Server
- SQL Server Development Tools
- The SQL Server Transact-SQL Debugger
- The Transact-SQL Debugger, Part 2
- Basic Troubleshooting for Transact-SQL Code
- An Introduction to Spatial Data in SQL Server 2008
- Performance Tuning
- Performance Tuning SQL Server: Tools and Processes
- Performance Tuning SQL Server: Tools Overview
- Creating a Performance Tuning Audit - Defining Components
- Creating a Performance Tuning Audit - Evaluation Part One
- Creating a Performance Tuning Audit - Evaluation Part Two
- Creating a Performance Tuning Audit - Interpretation
- Creating a Performance Tuning Audit - Developing an Action Plan
- Understanding SQL Server Query Plans
- Performance Tuning: Implementing Indexes
- Performance Monitoring Tools: Windows 2008 (and Higher) Server Utilities, Part 1
- Performance Monitoring Tools: Windows 2008 (and Higher) Server Utilities, Part 2
- Performance Monitoring Tools: Windows System Monitor
- Performance Monitoring Tools: Logging with System Monitor
- Performance Monitoring Tools: User Defined Counters
- General Transact-SQL (T-SQL) Performance Tuning, Part 1
- General Transact-SQL (T-SQL) Performance Tuning, Part 2
- General Transact-SQL (T-SQL) Performance Tuning, Part 3
- Performance Monitoring Tools: An Introduction to SQL Profiler
- Performance Tuning: Introduction to Indexes
- Performance Monitoring Tools: SQL Server 2000 Index Tuning Wizard
- Performance Monitoring Tools: SQL Server 2005 Database Tuning Advisor
- Performance Monitoring Tools: SQL Server Management Studio Reports
- Performance Monitoring Tools: SQL Server 2008 Activity Monitor
- The SQL Server 2008 Management Data Warehouse and Data Collector
- Performance Monitoring Tools: Evaluating Wait States with PowerShell and Excel
- Practical Applications
- Choosing the Back End
- The DBA's Toolbox, Part 1
- The DBA's Toolbox, Part 2
- Scripting Solutions for SQL Server
- Building a SQL Server Lab
- Using Graphics Files with SQL Server
- Enterprise Resource Planning
- Customer Relationship Management (CRM)
- Building a Reporting Data Server
- Building a Database Documenter, Part 1
- Building a Database Documenter, Part 2
- Data Management Objects
- Data Management Objects: The Server Object
- Data Management Objects: Server Object Methods
- Data Management Objects: Collections and the Database Object
- Data Management Objects: Database Information
- Data Management Objects: Database Control
- Data Management Objects: Database Maintenance
- Data Management Objects: Logging the Process
- Data Management Objects: Running SQL Statements
- Data Management Objects: Multiple Row Returns
- Data Management Objects: Other Database Objects
- Data Management Objects: Security
- Data Management Objects: Scripting
- Powershell and SQL Server - Overview
- PowerShell and SQL Server - Objects and Providers
- Powershell and SQL Server - A Script Framework
- Powershell and SQL Server - Logging the Process
- Powershell and SQL Server - Reading a Control File
- Powershell and SQL Server - SQL Server Access
- Powershell and SQL Server - Web Pages from a SQL Query
- Powershell and SQL Server - Scrubbing the Event Logs
- SQL Server 2008 PowerShell Provider
- SQL Server I/O: Importing and Exporting Data
- SQL Server I/O: XML in Database Terms
- SQL Server I/O: Creating XML Output
- SQL Server I/O: Reading XML Documents
- SQL Server I/O: Using XML Control Mechanisms
- SQL Server I/O: Creating Hierarchies
- SQL Server I/O: Using HTTP with SQL Server XML
- SQL Server I/O: Using HTTP with SQL Server XML Templates
- SQL Server I/O: Remote Queries
- SQL Server I/O: Working with Text Files
- Using Microsoft SQL Server on Handheld Devices
- Front-Ends 101: Microsoft Access
- Comparing Two SQL Server Databases
- English Query - Part 1
- English Query - Part 2
- English Query - Part 3
- English Query - Part 4
- English Query - Part 5
- RSS Feeds from SQL Server
- Using SQL Server Agent to Monitor Backups
- Reporting Services - Creating a Maintenance Report
- SQL Server Chargeback Strategies, Part 1
- SQL Server Chargeback Strategies, Part 2
- SQL Server Replication Example
- Creating a Master Agent and Alert Server
- The SQL Server Central Management System: Definition
- The SQL Server Central Management System: Base Tables
- The SQL Server Central Management System: Execution of Server Information (Part 1)
- The SQL Server Central Management System: Execution of Server Information (Part 2)
- The SQL Server Central Management System: Collecting Performance Metrics
- The SQL Server Central Management System: Centralizing Agent Jobs, Events and Scripts
- The SQL Server Central Management System: Reporting the Data and Project Summary
- Time Tracking for SQL Server Operations
- Migrating Departmental Data Stores to SQL Server
- Migrating Departmental Data Stores to SQL Server: Model the System
- Migrating Departmental Data Stores to SQL Server: Model the System, Continued
- Migrating Departmental Data Stores to SQL Server: Decide on the Destination
- Migrating Departmental Data Stores to SQL Server: Design the ETL
- Migrating Departmental Data Stores to SQL Server: Design the ETL, Continued
- Migrating Departmental Data Stores to SQL Server: Attach the Front End, Test, and Monitor
- Tracking SQL Server Timed Events, Part 1
- Tracking SQL Server Timed Events, Part 2
- Patterns and Practices for the Data Professional
- Managing Vendor Databases
- Consolidation Options
- Connecting to a SQL Azure Database from Microsoft Access
- SharePoint 2007 and SQL Server, Part One
- SharePoint 2007 and SQL Server, Part Two
- SharePoint 2007 and SQL Server, Part Three
- Querying Multiple Data Sources from a Single Location (Distributed Queries)
- Importing and Exporting Data for SQL Azure
- Working on Distributed Teams
- Professional Development
- Becoming a DBA
- Certification
- DBA Levels
- Becoming a Data Professional
- SQL Server Professional Development Plan, Part 1
- SQL Server Professional Development Plan, Part 2
- SQL Server Professional Development Plan, Part 3
- Evaluating Technical Options
- System Sizing
- Creating a Disaster Recovery Plan
- Anatomy of a Disaster (Response Plan)
- Database Troubleshooting
- Conducting an Effective Code Review
- Developing an Exit Strategy
- Data Retention Strategy
- Keeping Your DBA/Developer Job in Troubled Times
- The SQL Server Runbook
- Creating and Maintaining a SQL Server Configuration History, Part 1
- Creating and Maintaining a SQL Server Configuration History, Part 2
- Creating an Application Profile, Part 1
- Creating an Application Profile, Part 2
- How to Attend a Technical Conference
- Tips for Maximizing Your IT Budget This Year
- The Importance of Blue-Sky Planning
- Application Architecture Assessments
- Transact-SQL Code Reviews, Part One
- Transact-SQL Code Reviews, Part Two
- Cloud Computing (Distributed Computing) Paradigms
- NoSQL for the SQL Server Professional, Part One
- NoSQL for the SQL Server Professional, Part Two
- Object-Role Modeling (ORM) for the Database Professional
- Business Intelligence
- BI Explained
- Developing a Data Dictionary
- BI Security
- Gathering BI Requirements
- Source System Extracts and Transforms
- ETL Mechanisms
- Business Intelligence Landscapes
- Business Intelligence Layouts and the Build or Buy Decision
- A Single Version of the Truth
- The Operational Data Store (ODS)
- Data Marts – Combining and Transforming Data
- Designing Data Elements
- The Enterprise Data Warehouse — Aggregations and the Star Schema
- On-Line Analytical Processing (OLAP)
- Data Mining
- Key Performance Indicators
- BI Presentation - Client Tools
- BI Presentation - Portals
- Implementing ETL - Introduction to SQL Server 2005 Integration Services
- Building a Business Intelligence Solution, Part 1
- Building a Business Intelligence Solution, Part 2
- Building a Business Intelligence Solution, Part 3
- Tips and Troubleshooting
- SQL Server and Microsoft Excel Integration
- Tips for the SQL Server Tools: SQL Server 2000
- Tips for the SQL Server Tools – SQL Server 2005
- Transaction Log Troubles
- SQL Server Connection Problems
- Orphaned Database Users
- Additional Resources
- Tools and Downloads
- Utilities (Free)
- Tool Review (Free): DBDesignerFork
- Aqua Data Studio
- Microsoft SQL Server Best Practices Analyzer
- Utilities (Cost)
- Quest Software's TOAD for SQL Server
- Quest Software's Spotlight on SQL Server
- SQL Server on Microsoft's Virtual PC
- Red Gate SQL Bundle
- Microsoft's Visio for Database Folks
- Quest Capacity Manager
- SQL Server Help
- Visual Studio Team Edition for Database Professionals
- Microsoft Assessment and Planning Solution Accelerator
- Aggregating Server Data from the MAPS Tool
In previous articles I've explained what tables are, the physical implementations and limitations of tables, and constraints used to ensure the data that the tables contain. In this article, I'll complete the study of tables by exploring data types. I won’t cover them all, because you won’t use all of them (at first, anyway) and because they change based on which version and even sometimes which edition you’re using. But I will cover the major types that you’ll see used most often.
Data types are the kinds of data you can store in a column of a SQL Server table. When you create a table with the CREATE TABLE command, you specify the columns and the type of data they can contain. Often, the data type will require more information in addition to what it is, such as how long or what precision the data will store. Here’s a sample statement:
CREATE TABLE test ( FirstName VARCHAR(30) )
You can see that I have the CREATE TABLE statement, followed by a parenthesis, then the name of a column (Firstname) and then its data type (VARCHAR). I’ll explain that data type in a moment for now, focus on that format. In the case of VARCHAR, (which stands for Variable Characters) there is more information needed. The information VARCHAR wants is how long the string of characters can be.
You might wonder why you have to specify a data type. After all, what you and I normally see on the screen is just text. But the computer, of course, doesn’t store letters or any other symbol it just stores a numeric representation of those characters. Defining exactly what you’re storing, whether that’s textual characters or numbers or ranges of dates allows SQL Server to define the space it needs more efficiently. Not only that, whenever you store a number or date, SQL Server can perform math very quickly if it knows that the data you’re sending won’t be a character.
So you need to specify the data type for SQL Server to optimize speed and storage. But that isn’t the only reason. Specifying the type of data a field can hold also helps to ensure the data you store for your organization is what they expect. It’s part of the integrity of the system. By not allowing a character to be stored as the price of an item, you ensure that the math used to calculate profit is accurate, and so on.
In yet another case, by specifying the data type you can even allow the field to hold specialized data such as Microsoft Word documents or pictures.
The use and meaning of some data types are fairly obvious. For instance, when someone asks you how much money you have in your pocket, you don't answer with a date.
You could probably guess a few of the kinds of data a database system might store, such as text strings, numbers, dates and so forth. But even within the number data type, there are times that a money data type might make more sense to use than a general number. These distinctions have to do with how much storage space is needed for the data and how fast the data is accessed.
A general number data type has to leave room in its storage space to hold any possible numeric value from 10^38 +1 through 10^38 -1. That's a lot of space! Now, you might be thinking that with today's hard drive prices, that space requirement shouldn't cause a problem. While that may be true, the storage of the number 1 in that space wastes valuable real estate. It also makes the search engine work harder to locate data.
The rest of this article will focus on what data types are available in SQL Server and how you can use them. As I mentioned, I won’t cover each and every one. For that, you can refer to the official Books Online page for each version:
I’ll explain the data types you’ll see most often. I’ll group them by kind of data that they store to keep them together. I won’t be as specific as the references above, since I’ll try and stay as version-generic as I can. If I specify a data type that is only available in a certain version, I’ll point that out.
Number Data Types
The first category of data stored in SQL Server I’ll explain are those that work with numbers. Numbers come in multiple types, depending largely on the sign of the number you want to work with (such as positive or negative) and the length of numbers you want to store and with what precision.
Precision is important to understand it’s how many digits you want to store to the right of the decimal place in a number. Sometimes you don’t need any of that, such as when a unit of inventory you are recording doesn’t come in parts, only in whole numbers.
The Integer family: int, bigint, smallint, tinyint
An integer is a whole number between the negatives and positives. In other words, you don't want to set this type for anything that has a decimal.
The int (or more properly, integer) data types store integers of various sizes the largest (bigint) being around + or - 9,223,372,036,854,775,808 and the smallest (tinyint) being 0 through 255 (check the links above for the exact numbers and ranges). The reason there are so many is that this arrangement allows you to choose exactly what you need no more, no less.
Decimal and Numeric
The decimal or numeric data type store numbers with a decimal place. When you use this data type you specify the precision (how many numbers total) and scale (how many numbers to the right of the decimal). Here’s a sample:
CREATE TABLE TableName (numericolumn numeric(18, 4))
Money, Smallmoney
These are pretty obvious they store decimal numbers which are normally represented as two decimal places. You might wonder why not just use decimal for money and be done with it? The reason is that storage space again, and the fact that the system will round the numbers for you automatically during calculations.
The decimal type enforces the precision and scale, and the money types are for the more common two-place decimal numbers. The smaller money type stores the type of money often stored in transaction tables.
Float, Real
These data types store floating precision number data of various lengths. These types of numbers are less precise than other numeric types.
Note that floating values are not easy to represent in a binary computer, so you’ll need to read and understand this data type a little more before you implement it.
Text and Character Data Types
One of the most common data types you’ll store in a database is text. For SQL Server, working with a single letter and working with a group of sentences is the same it’s just the length that the system cares about.
Char, Nchar, Varchar, Nvarchar
The CHAR data type is stores fixed-length character data. You specify the size when you create the column, and if you don't use all the space when you add data in it, SQL Server will "pad" the length out to the end. You saw an example of the format this type uses at the top of this article.
The VARCHAR type doesn't waste that space; it only stores what you type.
The NCHAR and NVARCHAR types (as with all the N-prefixed data types) are used for Unicode data. What this does is halve the amount of data that can be stored, but what you get for that is and extra two-bytes for each character. Why is that useful? You can use that extra size to store more than one representation of a character say English or Turkish. That way, your data can be used by two systems in different languages.
Text, Ntext
The TEXT data type is often used for storing what might be called "memo" type data. Actually, this data type can be less efficient than other character types, so unless you need it, don't use it. If you have a lot of data to enter into a field, you may want to investigate pointing a file location on the hard drive with a text file or word-processing document. It all depends on how much you need to store and how it should be formatted. In another article, I'll show you how to do that.
Beginning in SQL Server 2008, you can use the new VARCHAR(MAX) data type, which allows 2^31-1 bytes of storage.
Date and Time Data Types
One of the most powerful data types stores date and time values. The reason they are so powerful is that combine with various functions and procedures in Transact-SQL to provide all kinds of calculations and formulas. For instance, you can store only the date and time of someone’s birth, and use a simple formula to determine how old someone is, up to the second.
Datetime, Smalldatetime
The DATETIME value stores both date and time in a single value. Interestingly, it isn’t the actual date that SQL Server stores it’s really just a serial number that the system uses to interpret dates, based on what the client sends or reads a very important distinction. You can really get tripped up if you don't keep in mind what the client is. If you're using a Web front end, experiment with various time zones to see if the client enters the data or the server does it on their behalf.
Even though you may only care about the hour or minute a Datetime column holds, the system stores that entire serial number. You can format the data a bunch of different ways when you need it to get the year, day, week, month, hour, minute or second. I’ll explain those in more detail later.
Beginning in SQL Server 2008, you have two more options DATE and TIME. As you might imagine, they store the date separate from the time. With the TIME type, you get seven levels of precision something that comes in handy on
Timestamp
Actually, this data type doesn’t store time it is used to enter a unique value in one column, when you want a number that indicates when the data was updated. It's a great tracking tool, but don't be fooled by the name. You can't select this column type out and get a pretty date or time format. It's just a unique sequencing number. I include it here because most people are looking for it in the datetime data types!
Other Data Types
Some data doesn’t fit as either numbers or text. To help you store “non-standard” data, SQL Server includes lots of other data types. I’m only covering a few of them here.
Binary, Varbinary
Binary data can be used to store most any computer data. You have to chunk it up into 8000 byte, well, bites. You can use this type to store anything from word-processing documents all the way to graphics although there's another type to handle that specific case.
With binary, you specify how large the column is, and with varbinary, you specify how big it can be.
Image
The IMAGE data type like the binary type, but it's specific to graphics. It’s been replaced in SQL Server 2008 with VARBINARY.
sql_variant
This is a data type that stores values of various data types, but I don't suggest you use it a lot. It makes for messy conversions and exports. You especially shouldn't use it for numeric or date types. It’s normally only used when you don’t know what kind of data might be stored in the cell.
Uniqueidentifier
This data type creates a globally unique number used as an identifier. I don't trust it; I just feel there are better ways to generate a unique number. I'll reference some sites a bit later that will explain that reasoning better than I have here.
bit
The bit data type is useful if you need to store a checkbox value or a yes or no answer. As you may already know, a bit stores either a 1 or 0 value, so you can also use this data type to store any Boolean result. This data type uses very little space, and can be sorted very quickly.
You can't set this data type to null, and it can't be indexed. Because the bit data type is so small, it obviously isn't a good candidate for a primary key!
The User Defined Data Type (UDDT)
The UDDT isn't really a new kind of data, it's just a compilation of the other types that you cobble together with the sp_addtype stored procedure. It lets you name a type, say to create a social security or phone number with a specific length or precision.
InformIT Articles and Sample Chapters
There’s a section in the article SQL Building Blocks and Server Settings that discusses the conversions of data from one type to another, and you should pay special attention to “implicit” conversions.
Books and eBooks
This work also covers data types: Sams Teach Yourself SQL in One Hour a Day, by Ryan Stephens, Ron Plew, Arie D. Jones.
Online Resources
Although I didn’t cover the material for Common Language Runtime (CLR) here, you can actually use it to make your own complex data types. More on that here.