Home > Articles > Data > SQL Server

📄 Contents

  1. SQL Server Reference Guide
  2. Introduction
  3. SQL Server Reference Guide Overview
  4. Table of Contents
  5. Microsoft SQL Server Defined
  6. SQL Server Editions
  7. SQL Server Access
  8. Informit Articles and Sample Chapters
  9. Online Resources
  10. Microsoft SQL Server Features
  11. SQL Server Books Online
  12. Clustering Services
  13. Data Transformation Services (DTS) Overview
  14. Replication Services
  15. Database Mirroring
  16. Natural Language Processing (NLP)
  17. Analysis Services
  18. Microsot SQL Server Reporting Services
  19. XML Overview
  20. Notification Services for the DBA
  21. Full-Text Search
  22. SQL Server 2005 - Service Broker
  23. Using SQL Server as a Web Service
  24. SQL Server Encryption Options Overview
  25. SQL Server 2008 Overview
  26. SQL Server 2008 R2 Overview
  27. SQL Azure
  28. The Utility Control Point and Data Application Component, Part 1
  29. The Utility Control Point and Data Application Component, Part 2
  30. Microsoft SQL Server Administration
  31. The DBA Survival Guide: The 10 Minute SQL Server Overview
  32. Preparing (or Tuning) a Windows System for SQL Server, Part 1
  33. Preparing (or Tuning) a Windows System for SQL Server, Part 2
  34. Installing SQL Server
  35. Upgrading SQL Server
  36. SQL Server 2000 Management Tools
  37. SQL Server 2005 Management Tools
  38. SQL Server 2008 Management Tools
  39. SQL Azure Tools
  40. Automating Tasks with SQL Server Agent
  41. Run Operating System Commands in SQL Agent using PowerShell
  42. Automating Tasks Without SQL Server Agent
  43. Storage – SQL Server I/O
  44. Service Packs, Hotfixes and Cumulative Upgrades
  45. Tracking SQL Server Information with Error and Event Logs
  46. Change Management
  47. SQL Server Metadata, Part One
  48. SQL Server Meta-Data, Part Two
  49. Monitoring - SQL Server 2005 Dynamic Views and Functions
  50. Monitoring - Performance Monitor
  51. Unattended Performance Monitoring for SQL Server
  52. Monitoring - User-Defined Performance Counters
  53. Monitoring: SQL Server Activity Monitor
  54. SQL Server Instances
  55. DBCC Commands
  56. SQL Server and Mail
  57. Database Maintenance Checklist
  58. The Maintenance Wizard: SQL Server 2000 and Earlier
  59. The Maintenance Wizard: SQL Server 2005 (SP2) and Later
  60. The Web Assistant Wizard
  61. Creating Web Pages from SQL Server
  62. SQL Server Security
  63. Securing the SQL Server Platform, Part 1
  64. Securing the SQL Server Platform, Part 2
  65. SQL Server Security: Users and other Principals
  66. SQL Server Security – Roles
  67. SQL Server Security: Objects (Securables)
  68. Security: Using the Command Line
  69. SQL Server Security - Encrypting Connections
  70. SQL Server Security: Encrypting Data
  71. SQL Server Security Audit
  72. High Availability - SQL Server Clustering
  73. SQL Server Configuration, Part 1
  74. SQL Server Configuration, Part 2
  75. Database Configuration Options
  76. 32- vs 64-bit Computing for SQL Server
  77. SQL Server and Memory
  78. Performance Tuning: Introduction to Indexes
  79. Statistical Indexes
  80. Backup and Recovery
  81. Backup and Recovery Examples, Part One
  82. Backup and Recovery Examples, Part Two: Transferring Databases to Another System (Even Without Backups)
  83. SQL Profiler - Reverse Engineering An Application
  84. SQL Trace
  85. SQL Server Alerts
  86. Files and Filegroups
  87. Partitioning
  88. Full-Text Indexes
  89. Read-Only Data
  90. SQL Server Locks
  91. Monitoring Locking and Deadlocking
  92. Controlling Locks in SQL Server
  93. SQL Server Policy-Based Management, Part One
  94. SQL Server Policy-Based Management, Part Two
  95. SQL Server Policy-Based Management, Part Three
  96. Microsoft SQL Server Programming
  97. An Outline for Development
  98. Database
  99. Database Services
  100. Database Objects: Databases
  101. Database Objects: Tables
  102. Database Objects: Table Relationships
  103. Database Objects: Keys
  104. Database Objects: Constraints
  105. Database Objects: Data Types
  106. Database Objects: Views
  107. Database Objects: Stored Procedures
  108. Database Objects: Indexes
  109. Database Objects: User Defined Functions
  110. Database Objects: Triggers
  111. Database Design: Requirements, Entities, and Attributes
  112. Business Process Model Notation (BPMN) and the Data Professional
  113. Business Questions for Database Design, Part One
  114. Business Questions for Database Design, Part Two
  115. Database Design: Finalizing Requirements and Defining Relationships
  116. Database Design: Creating an Entity Relationship Diagram
  117. Database Design: The Logical ERD
  118. Database Design: Adjusting The Model
  119. Database Design: Normalizing the Model
  120. Creating The Physical Model
  121. Database Design: Changing Attributes to Columns
  122. Database Design: Creating The Physical Database
  123. Database Design Example: Curriculum Vitae
  124. NULLs
  125. The SQL Server Sample Databases
  126. The SQL Server Sample Databases: pubs
  127. The SQL Server Sample Databases: NorthWind
  128. The SQL Server Sample Databases: AdventureWorks
  129. The SQL Server Sample Databases: Adventureworks Derivatives
  130. UniversalDB: The Demo and Testing Database, Part 1
  131. UniversalDB: The Demo and Testing Database, Part 2
  132. UniversalDB: The Demo and Testing Database, Part 3
  133. UniversalDB: The Demo and Testing Database, Part 4
  134. Getting Started with Transact-SQL
  135. Transact-SQL: Data Definition Language (DDL) Basics
  136. Transact-SQL: Limiting Results
  137. Transact-SQL: More Operators
  138. Transact-SQL: Ordering and Aggregating Data
  139. Transact-SQL: Subqueries
  140. Transact-SQL: Joins
  141. Transact-SQL: Complex Joins - Building a View with Multiple JOINs
  142. Transact-SQL: Inserts, Updates, and Deletes
  143. An Introduction to the CLR in SQL Server 2005
  144. Design Elements Part 1: Programming Flow Overview, Code Format and Commenting your Code
  145. Design Elements Part 2: Controlling SQL's Scope
  146. Design Elements Part 3: Error Handling
  147. Design Elements Part 4: Variables
  148. Design Elements Part 5: Where Does The Code Live?
  149. Design Elements Part 6: Math Operators and Functions
  150. Design Elements Part 7: Statistical Functions
  151. Design Elements Part 8: Summarization Statistical Algorithms
  152. Design Elements Part 9:Representing Data with Statistical Algorithms
  153. Design Elements Part 10: Interpreting the Data—Regression
  154. Design Elements Part 11: String Manipulation
  155. Design Elements Part 12: Loops
  156. Design Elements Part 13: Recursion
  157. Design Elements Part 14: Arrays
  158. Design Elements Part 15: Event-Driven Programming Vs. Scheduled Processes
  159. Design Elements Part 16: Event-Driven Programming
  160. Design Elements Part 17: Program Flow
  161. Forming Queries Part 1: Design
  162. Forming Queries Part 2: Query Basics
  163. Forming Queries Part 3: Query Optimization
  164. Forming Queries Part 4: SET Options
  165. Forming Queries Part 5: Table Optimization Hints
  166. Using SQL Server Templates
  167. Transact-SQL Unit Testing
  168. Index Tuning Wizard
  169. Unicode and SQL Server
  170. SQL Server Development Tools
  171. The SQL Server Transact-SQL Debugger
  172. The Transact-SQL Debugger, Part 2
  173. Basic Troubleshooting for Transact-SQL Code
  174. An Introduction to Spatial Data in SQL Server 2008
  175. Performance Tuning
  176. Performance Tuning SQL Server: Tools and Processes
  177. Performance Tuning SQL Server: Tools Overview
  178. Creating a Performance Tuning Audit - Defining Components
  179. Creating a Performance Tuning Audit - Evaluation Part One
  180. Creating a Performance Tuning Audit - Evaluation Part Two
  181. Creating a Performance Tuning Audit - Interpretation
  182. Creating a Performance Tuning Audit - Developing an Action Plan
  183. Understanding SQL Server Query Plans
  184. Performance Tuning: Implementing Indexes
  185. Performance Monitoring Tools: Windows 2008 (and Higher) Server Utilities, Part 1
  186. Performance Monitoring Tools: Windows 2008 (and Higher) Server Utilities, Part 2
  187. Performance Monitoring Tools: Windows System Monitor
  188. Performance Monitoring Tools: Logging with System Monitor
  189. Performance Monitoring Tools: User Defined Counters
  190. General Transact-SQL (T-SQL) Performance Tuning, Part 1
  191. General Transact-SQL (T-SQL) Performance Tuning, Part 2
  192. General Transact-SQL (T-SQL) Performance Tuning, Part 3
  193. Performance Monitoring Tools: An Introduction to SQL Profiler
  194. Performance Tuning: Introduction to Indexes
  195. Performance Monitoring Tools: SQL Server 2000 Index Tuning Wizard
  196. Performance Monitoring Tools: SQL Server 2005 Database Tuning Advisor
  197. Performance Monitoring Tools: SQL Server Management Studio Reports
  198. Performance Monitoring Tools: SQL Server 2008 Activity Monitor
  199. The SQL Server 2008 Management Data Warehouse and Data Collector
  200. Performance Monitoring Tools: Evaluating Wait States with PowerShell and Excel
  201. Practical Applications
  202. Choosing the Back End
  203. The DBA's Toolbox, Part 1
  204. The DBA's Toolbox, Part 2
  205. Scripting Solutions for SQL Server
  206. Building a SQL Server Lab
  207. Using Graphics Files with SQL Server
  208. Enterprise Resource Planning
  209. Customer Relationship Management (CRM)
  210. Building a Reporting Data Server
  211. Building a Database Documenter, Part 1
  212. Building a Database Documenter, Part 2
  213. Data Management Objects
  214. Data Management Objects: The Server Object
  215. Data Management Objects: Server Object Methods
  216. Data Management Objects: Collections and the Database Object
  217. Data Management Objects: Database Information
  218. Data Management Objects: Database Control
  219. Data Management Objects: Database Maintenance
  220. Data Management Objects: Logging the Process
  221. Data Management Objects: Running SQL Statements
  222. Data Management Objects: Multiple Row Returns
  223. Data Management Objects: Other Database Objects
  224. Data Management Objects: Security
  225. Data Management Objects: Scripting
  226. Powershell and SQL Server - Overview
  227. PowerShell and SQL Server - Objects and Providers
  228. Powershell and SQL Server - A Script Framework
  229. Powershell and SQL Server - Logging the Process
  230. Powershell and SQL Server - Reading a Control File
  231. Powershell and SQL Server - SQL Server Access
  232. Powershell and SQL Server - Web Pages from a SQL Query
  233. Powershell and SQL Server - Scrubbing the Event Logs
  234. SQL Server 2008 PowerShell Provider
  235. SQL Server I/O: Importing and Exporting Data
  236. SQL Server I/O: XML in Database Terms
  237. SQL Server I/O: Creating XML Output
  238. SQL Server I/O: Reading XML Documents
  239. SQL Server I/O: Using XML Control Mechanisms
  240. SQL Server I/O: Creating Hierarchies
  241. SQL Server I/O: Using HTTP with SQL Server XML
  242. SQL Server I/O: Using HTTP with SQL Server XML Templates
  243. SQL Server I/O: Remote Queries
  244. SQL Server I/O: Working with Text Files
  245. Using Microsoft SQL Server on Handheld Devices
  246. Front-Ends 101: Microsoft Access
  247. Comparing Two SQL Server Databases
  248. English Query - Part 1
  249. English Query - Part 2
  250. English Query - Part 3
  251. English Query - Part 4
  252. English Query - Part 5
  253. RSS Feeds from SQL Server
  254. Using SQL Server Agent to Monitor Backups
  255. Reporting Services - Creating a Maintenance Report
  256. SQL Server Chargeback Strategies, Part 1
  257. SQL Server Chargeback Strategies, Part 2
  258. SQL Server Replication Example
  259. Creating a Master Agent and Alert Server
  260. The SQL Server Central Management System: Definition
  261. The SQL Server Central Management System: Base Tables
  262. The SQL Server Central Management System: Execution of Server Information (Part 1)
  263. The SQL Server Central Management System: Execution of Server Information (Part 2)
  264. The SQL Server Central Management System: Collecting Performance Metrics
  265. The SQL Server Central Management System: Centralizing Agent Jobs, Events and Scripts
  266. The SQL Server Central Management System: Reporting the Data and Project Summary
  267. Time Tracking for SQL Server Operations
  268. Migrating Departmental Data Stores to SQL Server
  269. Migrating Departmental Data Stores to SQL Server: Model the System
  270. Migrating Departmental Data Stores to SQL Server: Model the System, Continued
  271. Migrating Departmental Data Stores to SQL Server: Decide on the Destination
  272. Migrating Departmental Data Stores to SQL Server: Design the ETL
  273. Migrating Departmental Data Stores to SQL Server: Design the ETL, Continued
  274. Migrating Departmental Data Stores to SQL Server: Attach the Front End, Test, and Monitor
  275. Tracking SQL Server Timed Events, Part 1
  276. Tracking SQL Server Timed Events, Part 2
  277. Patterns and Practices for the Data Professional
  278. Managing Vendor Databases
  279. Consolidation Options
  280. Connecting to a SQL Azure Database from Microsoft Access
  281. SharePoint 2007 and SQL Server, Part One
  282. SharePoint 2007 and SQL Server, Part Two
  283. SharePoint 2007 and SQL Server, Part Three
  284. Querying Multiple Data Sources from a Single Location (Distributed Queries)
  285. Importing and Exporting Data for SQL Azure
  286. Working on Distributed Teams
  287. Professional Development
  288. Becoming a DBA
  289. Certification
  290. DBA Levels
  291. Becoming a Data Professional
  292. SQL Server Professional Development Plan, Part 1
  293. SQL Server Professional Development Plan, Part 2
  294. SQL Server Professional Development Plan, Part 3
  295. Evaluating Technical Options
  296. System Sizing
  297. Creating a Disaster Recovery Plan
  298. Anatomy of a Disaster (Response Plan)
  299. Database Troubleshooting
  300. Conducting an Effective Code Review
  301. Developing an Exit Strategy
  302. Data Retention Strategy
  303. Keeping Your DBA/Developer Job in Troubled Times
  304. The SQL Server Runbook
  305. Creating and Maintaining a SQL Server Configuration History, Part 1
  306. Creating and Maintaining a SQL Server Configuration History, Part 2
  307. Creating an Application Profile, Part 1
  308. Creating an Application Profile, Part 2
  309. How to Attend a Technical Conference
  310. Tips for Maximizing Your IT Budget This Year
  311. The Importance of Blue-Sky Planning
  312. Application Architecture Assessments
  313. Transact-SQL Code Reviews, Part One
  314. Transact-SQL Code Reviews, Part Two
  315. Cloud Computing (Distributed Computing) Paradigms
  316. NoSQL for the SQL Server Professional, Part One
  317. NoSQL for the SQL Server Professional, Part Two
  318. Object-Role Modeling (ORM) for the Database Professional
  319. Business Intelligence
  320. BI Explained
  321. Developing a Data Dictionary
  322. BI Security
  323. Gathering BI Requirements
  324. Source System Extracts and Transforms
  325. ETL Mechanisms
  326. Business Intelligence Landscapes
  327. Business Intelligence Layouts and the Build or Buy Decision
  328. A Single Version of the Truth
  329. The Operational Data Store (ODS)
  330. Data Marts – Combining and Transforming Data
  331. Designing Data Elements
  332. The Enterprise Data Warehouse — Aggregations and the Star Schema
  333. On-Line Analytical Processing (OLAP)
  334. Data Mining
  335. Key Performance Indicators
  336. BI Presentation - Client Tools
  337. BI Presentation - Portals
  338. Implementing ETL - Introduction to SQL Server 2005 Integration Services
  339. Building a Business Intelligence Solution, Part 1
  340. Building a Business Intelligence Solution, Part 2
  341. Building a Business Intelligence Solution, Part 3
  342. Tips and Troubleshooting
  343. SQL Server and Microsoft Excel Integration
  344. Tips for the SQL Server Tools: SQL Server 2000
  345. Tips for the SQL Server Tools – SQL Server 2005
  346. Transaction Log Troubles
  347. SQL Server Connection Problems
  348. Orphaned Database Users
  349. Additional Resources
  350. Tools and Downloads
  351. Utilities (Free)
  352. Tool Review (Free): DBDesignerFork
  353. Aqua Data Studio
  354. Microsoft SQL Server Best Practices Analyzer
  355. Utilities (Cost)
  356. Quest Software's TOAD for SQL Server
  357. Quest Software's Spotlight on SQL Server
  358. SQL Server on Microsoft's Virtual PC
  359. Red Gate SQL Bundle
  360. Microsoft's Visio for Database Folks
  361. Quest Capacity Manager
  362. SQL Server Help
  363. Visual Studio Team Edition for Database Professionals
  364. Microsoft Assessment and Planning Solution Accelerator
  365. Aggregating Server Data from the MAPS Tool

High Availability, as it refers to SQL Server, is simply making sure that the data is available to the users and applications as much as possible. Based on the needs you have, you can set up anything from being able to get the data back to a certain date all the way through keeping the data available constantly.

But there is a cost for each level within this spectrum. It boils down to the fact that the more uptime you want, the more expensive and complicated your solution becomes. The proper thing to do is to work with the organization to find out what kind of downtime they can tolerate. You have to be careful how you phrase this question, however. Asking the business “How much uptime do you want?” will most certainly result in the response “We want the system to be available all the time!” That may or may not be a realistic goal, since they might not be willing to tolerate the cost and manpower required to maintain that level.

So what are the levels, and what kind of availability do they provide? I’ll cover that in another tutorial, and I’ll cover the particular solutions in other articles here at InformIT. Here’s a list of some of those solutions:

  • Hardware redundancy
  • Backups
  • Replication
  • Transaction Log Shipping
  • Database Mirroring

Windows and SQL Server Clustering

Clustering is one of the high-availability methods you can use to ensure the safety and continuous operation of your systems. It involves the Microsoft Windows operating system and the SQL Server platform. Server 2000 through the very latest versions supports failover clustering. Before I continue with the explanation of clustering with SQL Server, I need to clarify what that term means here — since there are two types of clustering: Application Load Balancing and Failover.

Application Load Balancing Cluster

In an Application Load Balancing cluster, all servers (called "nodes") that are part of the cluster act as a single unit. A specific node or software service creates the illusion of a single server to the outside world. This server or process passes processing requests off to one or more server(s) using a messaging system so that it can determine which physical computer is available to process a request. That node or nodes return the data request back to the message controller which in turn returns it to the requester. This sharing of work produces a very powerful "virtual" computer. If one of the nodes leaves the cluster, the system hands the work to another server. These types of clusters most often don't share any of their subsystems such as the processors or hard drives, and are used for memory, I/O or processor-intensive applications.

Microsoft offers this type of environment in their “Compute Cluster” product, as well as in their Cloud database server. You can read more about the Microsoft Computer Cluster and the data cloud services at the link in the Resources section at the end of this tutorial.

Failover Clustering

In failover clustering, there are multiple servers sharing a single storage system between them. One system acts as the active or primary node, and the others act as passive or standby nodes. The servers establish a network signal between them that acts as a heartbeat, and should the standby node(s) not detect the active nodes, another node takes over the identity of the primary or active node. The disk retains the data so that only one system writes to it at a time.

Failover clustering is fairly easy to set up, and provides high safety for your environment. On Microsoft systems, Windows 2000 Server through 2008 supports clustering. The higher the edition, (such as Standard through Enterprise or Datacenter) the more nodes are supported in the cluster.

So what you will need to set up the Windows Cluster are at least two computers that are fairly similar in power and configuration. You do not have to buy exactly the same hardware for all the nodes — they just need to be able to handle the load if called on.

The next thing you’ll need is at least two network cards in each system. One card is used to talk with the clients on the network, and the other is used for that “heartbeat” signal that the systems maintain with each other. You will set up a network address between the nodes that only they have access to.

You’ll need an internal disk that each system uses for its own operating system and local files. It’s important that in a solution like this that you make sure to protect this drive, usually with a RAID setup.

Another internal drive is the “Quorum” storage. In Windows 2000 Server, this is a central location where the nodes replicate certain data. In Windows Server 2003, the Quorum can be located on a share as well. In Windows Server 2008, the entire idea of a Quorum has changed — and it’s all share-based, although the share is very resilient.

Next, you’ll need the share data storage between all the nodes. In Windows 2000 Server through 2003, you can provide that with a “shared SCSI” bus, which is a type of card you install in each system that you connect to external storage, usually a Storage Area Network or SAN. In Windows 2008 server, only “iSCSI Targets” are supported, so you’ll need to move to that technology for the latest versions.

To make all of this work, there are various service accounts and domain groups that you will create or that will be created for you. These are all different based on the version of Windows Server you are using.

SQL Server and Clustering

SQL Server works on one of these Windows clusters, and has since version 7.0. SQL Server has two modes of operating in a failover cluster: Active/Active and Active/Passive.

To get SQL Server clustering installed, the basic process is to set up the Windows Cluster first, and attempt a failover to ensure that all resource groups are still available. Once you’re sure the cluster is functioning properly, you can begin the installation of SQL Server on the nodes. You should always read the full documentation on the installation for your setup so that you know which options to pick. This overview provides a general guide, but not the individual steps for the installation of SQL Server on a cluster.

In SQL Server versions 7 through 2005, you simply install SQL Server on the active node, and the installation program will automatically detect that it is being installed on a cluster. It will then prompt you to install SQL Server to the other nodes, if that is what you want.

In SQL Server 2008, the installation process has changed. You will need to run setup on the active node, and then on each node in turn that you want SQL Server to run on. When you start the new installation process, the main screen provides a link to all of the installation documentation.

Active/Active

In this type of failover cluster, each server acts on its own, and can also handle the other server’s failure. Let’s say you have two servers (nodes) in the cluster named ServerA and ServerB. The cluster itself is known by another name such as Cluster1. Users can address either Cluster1, in which case they are using the cluster as a single computer, or they can address ServerB directly. Should ServerA go offline, ServerB becomes Cluster1 and still retains the identity of ServerB.

In SQL Server versions 7 through 2000, an Active/Active cluster can have four nodes participating, and up to 16 instances. An instance is another installation of SQL Server running currently on a single. In ODBC connections and other connection types, it is addressed by the name of the server and then the name of the instance, like this: SERVERNAME\INSTANCENAME instead of just the SERVERNAME that you’ may be used to using.

This type of cluster use should be avoided. The reason for clustering in the first place is to provide availability in case of an issue, and using the recovery node for another purpose can compromise that goal. Not only that, the second active node will not be protected if it fails.

Active/Passive

In Active/Passive, the Cluster is the only name known to the outside world. The others "stand by" and are activated only manually or if the first node fails.

Using the same example from the previous discussion, you might have two nodes — one called ServerA and the other called ServerB. Once they join the cluster, the users only communicate with their “shared” name of Cluster1. If either node goes down, the shared disk arrangement protects the data and the combined hardware and software protects the SQL Server services and Instance name.

The number of nodes that you add to a SQL Server cluster depends on the operating system (Standard versus Enterprise and so on) and the version and edition of SQL Server you have installed. In any case, the more nodes you have, the more that can fail before you have a major issue.

Combined with the latest version of Windows clustering, from SQL Server 2008 onwards you can now use “stretch” clusters, which allow clustering over larger geographical areas.

Why Cluster?

Although the primary reason to cluster is for safety, using this feature allows you to provide maintenance time for a system that needs to be up constantly. To perform maintenance or apply service packs, you can manually fail over a system to the second node, upgrade a service pack on the first node, fail it back over, and then upgrade the second.

Requirements

No matter what configurations of failover clustering you choose, there are some fairly stringent hardware requirements, in addition to the software requirements I mentioned earlier. You must use the hardware on the Microsoft Hardware Compatibility List to ensure that the cluster will work when you need it most. You might be able to install the software on hardware not listed there, but you won't get support from Microsoft if you do. You can find that here: http://www.microsoft.com/whdc/hcl/search.mspx

To begin, you'll need two similar systems. They don't have to be duplicate sets of hardware, but it does simplify support if they are. You'll want to include enough RAM on both systems to accommodate a failover. If you're using Active/Active clustering, include the amount of RAM equal to all configurations running on a single system on all nodes.

You’ll need two network cards in each server. The first will act as the "public" network that all users access, and the second as the "private" network between servers to check the heartbeat signal. The private card should be hooked to a fast switch or other direct connection between the nodes only. You'll need four sets of IP address segments (networks) on these cards: One for the heartbeat connection, one for the public card that identifies the individual system, another on the public network for the cluster name, and another for the SQL Server instance.

Next, you’re going to need a disk to share between the servers. This is accomplished by adding a special set of adapter cards in each node that provide a connection to the I/O subsystem but are aware of each other. Microsoft calls this a "shared SCSI bus." You can find the list of adapters and I/O subsystems on the Hardware Compatibility List. You will create at least two separate drives on this subsystem: One for the Quorum disk which holds the files that synchronize the cluster and another that holds the data that both servers can see, such as databases and log files.

If you want to learn more about clustering but don't have the budget to purchase all the hardware, you should investigate using a Virtual Machine. A virtual machine is a software emulation of the parts of a computer. Once you install the virtual machine software, it places a window on your screen that looks like a machine rebooting — and that’s exactly what it is. A virtual machine is basically just a hardware layer in software — so you can install another operating system and it believes it’s running on this software based hardware. If you are an administrator, you absolutely have to get this kind of software. I use a product called VMWare and another from Microsoft called Virtual Server and now HyperV. All of these allow you to install all kinds of operating systems, from Microsoft Windows to Linux and Novell. Once these images have been created, they can be used on any other system that has VMWare installed. This will not work for Windows 2008 and higher — they have removed the ability to use a single SCSI “target” for the shared storage.

I use this process to create all those testing servers I need in Windows 2003. It keeps me from having to buy a new box every time I need to test an upgrade, fake a set of network boxes and so forth. VM software allows you to set "backup points" so that you can roll back to a certain place in your build and more.

On Windows the Microsoft Clustering Service (MSCS) provides the Cluster Manager. This tool is located in the Administrative Tools area on your Start menu once it is installed. You use the Cluster Manager to control the nodes and the services they provide, from starting SQL Server in clustered mode to file shares.

For SQL Server, other than starting and stopping the clustering portion of the service you treat it as a normal installation. The following tools are supported in SQL Server clustering:

  • Full-Text Search/Queries
  • SQL Server Enterprise Manager (2000)
  • All Management Tools (2005)
  • SQL Server Service Control Manager
  • SQL Server Profiler
  • SQL Server Query Analyzer

Client applications access the cluster as a regular SQL Server installation.

Configuring the Cluster

To begin, you need to assemble all of your hardware with no operating system, with all components connected and ready. Install Windows Server on the first node and join or create an Active Directory domain. Configure all the IP addresses to support the public and private networks, and have at least two more IP addresses on the public network ready for the cluster name and the SQL Server name.

Configure the second node with the operating system in a similar way. Depending on the I/O subsystem, you may need to shut the first node down first so that the second can configure itself to the shared SCSI bus.

Once the operating system is installed, you need to install or enable the clustering software. In Windows 2000, this is another selection from the Windows Components section of the Add/Remove Software applet. In Windows 2003 and higher it's a matter of selecting the Cluster Manager software from the Administrative Tools item in the Windows Start menu. In both cases, a wizard starts and asks you to complete the process, requesting the location of the Quorum drive, the Shared Drives, and the network card addresses.

Once that installation is complete, repeat the process on the second node. In that case you'll join a current cluster rather than creating a new one. With both nodes up and running, test it using a failover scenario to make sure you're ready to go. Ensure that you're back on the primary node before you start the installation of SQL Server.

In all of the versions that support clustering, the SQL Server installation program detects that you are installing on a cluster and the only differences are the location of the database files and the names of the nodes you are installing on. The rest is handled automatically. Install from the Primary node and select the other nodes you wish to present in the cluster during the installation process. As I mentioned, with SQL Server 2008, you’ll install on each node.

In future overviews and tutorials I’ll explain how to manage a cluster, and what is different for basic operations.

InformIT Articles and Sample Chapters

Building the Foundations for a Highly Available Windows Server Architecture has a section that talks about the basics of clustering.

Creating a Fault-Tolerant Environment in Windows Server 2003 is a related sample chapter from the book Microsoft Windows Server 2003 Insider Solutions.

Books and eBooks

In their book Microsoft Windows Server 2003 Insider Solutions, Ed Roberts, Andrew Abbate, Eric Kovach, and Rand Morimoto cover more information you can use. (Read in Safari Books Online)

Online Resources

You can find more about Microsoft's new Application Load Balancing Cluster initiative, called the Compute Cluster.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020