Home > Articles > Programming

This chapter is from the book

Worldwide Consumption of Semiconductors

Where do all these chips, laser diodes, and sensors go? They end up in quite a few places, as you might imagine, and some that you probably can't. Semiconductors are used in many different kinds of systems, from the obvious ones like computers and televisions, to the obscure ones like dog collars, telephone wiring, and greeting cards. Here we'll take a look at some of the major categories, as shown in Figure 5.8.

Figure 8 Figure 5.8 Relative consumption of semiconductors by industry. Courtesy of In-Stat. Used with permission.


Computers and PCs

First and foremost among consumers of semiconductors are computers. Computers are almost all semiconductors, with a little metal or plastic wrapped around the outside. A 30-pound bag of electronics would not be an inappropriate description of the average PC. Because we're measuring consumption by revenue, not units, PCs are even more heavily represented in the total because of their expensive main microprocessor. PCs also have a lot of memory chips, the second-most expensive class of semiconductors. All this makes PC sales a good proxy for semiconductor sales, at least in that segment.

Processor Pricing Battles

For years, AMD and Intel have battled over the PC-processor business. Intel has always commanded the lion's share of the market, yet AMD's chips are sometimes considered technically superior and are almost always cheaper. How can AMD build its chips so inexpensively, and why don't customers flock to the less expensive processors?

To answer the first question, it's important to understand that price and cost are not the same thing. They're only loosely related. Both Intel and AMD sell their PC processors for far more than they cost to make. Like perfume and luxury cars, the cost of the materials and labor is almost irrelevant. The price is set by market conditions, not by cost overhead.

The second question hinges on the small part the processor plays in the total PC price structure. Mainstream PCs generally sell for around $800 and laptop computers can easily be priced at double that amount. The cost of the microprocessor is only a small part of the cost of building a whole PC. A suicidal competitor could give its chips away for free, but the complete PC would only be about $35 less expensive, not enough to sway most customers.

Enter brand-name marketing. It's fair to say that most people buying a PC don't have the faintest idea of how they work or what all the specifications mean. This is the perfect environment for marketing tactics to flower. Years of "Intel Inside" ad campaigns never mentioned anything about the chip's technical features. They were pure brand-awareness ploys, imprinting a particular brand name on a largely nae public. Microprocessors are now sold like perfume.

It also explains why PCs are so price competitive. Virtually no PC makers also make chips. (IBM is one of the exceptions.) That means PC makers have to buy their chips from the same semiconductor vendors that are also supplying their competitors. Volume discounts are about the only concession PC makers can wring out of chip makers. With little value to add other than the color of the plastic box, PC makers fight for every penny, which depends on keeping their volumes up. The advantage to consumers is that prices keep going down as chips get cheaper and PC makers struggle to remain competitive.

Communications and Networking

After PCs, communications equipment is the biggest consumer of electronics. For our purposes, communications means telephones and telephone equipment, computer networking, cellular phones and their infrastructure, and anything to do with satellites, television, and radio transmissions (although not the TVs and radios themselves). This segment has been growing rapidly for a number of years. The actual percentage you hear depends on whom you ask and when you ask them. It dips and rises with market conditions, of course, as telephone companies and network companies first invest, then retrench, depending on regulatory and market conditions.

Networking equipment consumes high-end microprocessors and DSP chips, lots and lots of memory, and special-purpose communications chips developed especially for one or two customers. Network and telephone companies also buy lots of laser diodes and optical sensors for their fiber-optic networks. Cellular telephone makers consume vast quantities of DSP and microcontroller chips—there's typically one of each in every cell phone—as well as mountains of tiny RF components such as resistors, capacitors, and inductors.

Consumer Electronics

Consumer electronics gives communications systems a good run for the money, consuming about one-fifth of all the world's semiconductor value. Consumer items can be televisions, DVD players, electronic toys, and also "white goods" such as refrigerators, washers, and dryers, all of which now include microcontrollers to mange power consumption and add exotic features.

Running Rings Around Sega Saturn

In the late 1990s one of the most popular home video game consoles was Sega's Saturn. The Saturn was an extraordinary system in many ways. The system was so advanced and high-end that, ironically, it led to Saturn's collapse and Sega's eventual withdrawal from the hardware market.

Saturn had no fewer than four 32-bit microprocessors, three from Hitachi and one from Motorola. These were partnered with six custom-designed ASIC chips and several megabytes of memory. The entire system was considerably more complex than the average PC of its day. It was so complex, in fact, that most game programmers couldn't exploit its features well. Under pressure to meet deadlines, most game programmers took shortcuts and used only one or two of Saturn's four processors. Although many Saturn games were good, few flexed its considerable hardware muscle. After it cratered, Saturn left a vacancy for Microsoft's Xbox and Sony's PlayStation 2.

Home video games are a big consumer of electronics in the home. Nintendo, Sony, and Microsoft (and Sega, Atari, and Commodore before them) have all created very high-end computers that sell for very little money. In fact, these companies sell their game consoles at a loss. A new PlayStation 2, for example, might cost Sony $350 or more to manufacture, yet sells for $200 to $300 when new. Sony makes up the money on game (software) sales. Unlike PC software, PlayStation software must be officially licensed and "approved" by Sony, and royalties apply. (The same is true for other game consoles.) In this razor-and-blade business model, the game console is merely an enticement for consumers to buy games. Each game brings in a royalty of a few dollars to the maker of the console, in this case, Sony. Over the life of the console, Sony will make more than enough money from software royalties to offset the cost of effectively taping a $100 bill to every PlayStation.

The problems with this business model are obvious, yet the concept itself is a very old one. If game players don't buy enough games, the game maker loses money. The break-even point for most video game systems comes after consumers buy three to five titles. That makes it a safe bet, as statistics show that most video game owners buy more than a dozen games over the useful life of the system.

The second problem is that of deferred revenue versus instant gratification. The game maker must spend the money up front to manufacture and market millions of game consoles, generating a huge financial loss. Only after several months have passed will software royalties begin to make up these losses. Companies must have deep pockets, or very patient investors, to enter the video game market.

Finally, the entire scheme hinges on licensed software. There must be no "shareware" game titles, no pirated or copied games, and no independent or unlicensed game developers. In short, it needs to be the exact opposite of the PC software industry. To prevent this, game consoles include obscure and undocumented hardware features that independent programmers are unlikely to figure out. Officially approved and licensed programmers, however, are taught the secrets of the system in return for a licensing fee and a promise to pay royalties on every game they sell. In some cases (e.g., Sony's original PlayStation), the game CDs themselves are mastered and duplicated by the game manufacturer, which brings in additional revenue and helps control inventory. As a last resort, video game manufacturers can exert legal pressure on unlicensed programmers producing "rogue" software that doesn't generate royalties.

Industrial Electronics

The industrial uses of semiconductors are many and varied. Chips show up in robots, vision-inspection systems, alarms and security systems, and power generators, to name but a few. Large, expensive, high-powered semiconductors are used in dams, nuclear plants, and oil plants to regulate and control the electricity these plants generate.

Robots are full of electronics, of course. Heavy industrial robots have a half-dozen motors to move their joints, and each motor is usually controlled by its own miniature computer. Then there's one main computer (the robot's "head") that controls all of these. Heavy robots are amazing for their ability to pick up and move heavy loads, then set them down accurately to within fractions of an inch. That kind of accuracy calls for some exotic mathematics, called kinematics, to predict how and when the robot arm needs to speed up and slow down. This is all handled by low-cost microprocessor chips, along with dozens of memory chips, communications chips (for talking to other robots on the assembly line), and high-voltage chips to power the whole thing.

Robots with vision systems combine CCD image sensors with more miniature computers to analyze what they see. Some robots are nothing but vision systems, with no moving arms at all. Either way, these electronic eyeballs can look at parts moving by on a conveyor belt and instantly recognize any flawed or damaged ones. Other robots can then throw the bad pieces into the trash. Robots can also sort and straighten scattered parts so they're all turned the same way in nice, neat rows, making the job easier for the next robot down the assembly line. Robots with vision can assemble anything from vacuum cleaners to chocolates. A popular brand of sandwich cookie is made by robots that deliberately assemble the two halves slightly off-center, to make the cookies look handmade.

Automotive Electronics

The semiconductor content of automobiles has been growing steadily for years and shows little sign of abating. The average new automobile now carries about $200 worth of electronics, including almost a dozen microprocessors or microcontrollers. Large, late-model luxury cars can have well over 60 microprocessors. Some electronics are added for safety (collision-avoidance detectors, airbags, night vision), some for comfort or entertainment (in-dash CD players, electrically adjustable seats, air conditioning), and some to just run the car, replacing older mechanical designs (electronic ignition, antilock brakes, or automatic transmission). That doesn't even include the bits that actually look like computers, such as satellite-guided navigation systems and rear-seat movie players.

The electronic systems in cars are starting to communicate and interact in unusual ways. For example, in some cars the electronics controlling the position of the side-view mirrors communicates with the electronics in the automatic transmission. Why? So the mirrors will automatically tilt down and inward whenever you put the car into reverse, the better for you to see the rear of your car while backing up.

Other cars connect the in-dash radio or CD player to the antilock brakes. This seemingly bizarre combination allows the radio to adjust its volume automatically to compensate for road speed. (The antilock brake system has the best gauge of current road speed.) Cars fitted with satellite navigation systems and cellular telephones often connect these two systems together with the airbag controller. The purpose is to detect whether the car is involved in an accident serious enough to deploy the airbags. If so, the car automatically phones for emergency services and, using the satellite navigation system, transmits the exact location of the accident. Often this system is tied to a fourth system, unlocking the car doors automatically.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020