Home > Articles

This chapter is from the book

An Intermediate Net in Keras

To wrap up this chapter, let’s incorporate the new theory we’ve covered into a neural network to see if we can outperform our previous Shallow Net in Keras model at classifying handwritten digits.

The first few stages of our Intermediate Net in Keras Jupyter notebook are identical to those of its Shallow Net predecessor. We load the same Keras dependencies, load the MNIST dataset in the same way, and preprocess the data in the same way. As shown in Example 8.1, the situation begins to get interesting when we design our neural network architecture.

Example 8.1 Keras code to architect an intermediate-depth neural network

model = Sequential()
model.add(Dense(64, activation='relu', input_shape=(784,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))

The first line of this code chunk, model = Sequential(), is the same as before (refer to Example 5.6); this is our instantiation of a neural network model object. It’s in the second line that we begin to diverge. In it, we specify that we’ll substitute the sigmoid activation function in the first hidden layer with our most-highly-recommended neuron from Chapter 6, the relu. Other than this activation function swap, the first hidden layer remains the same: It still consists of 64 neurons, and the dimensionality of the 784-neuron input layer is unchanged.

The other significant change in Example 8.1 relative to the shallow architecture of Example 5.6 is that we specify a second hidden layer of artificial neurons. By calling the model.add() method, we nearly effortlessly add a second Dense layer of 64 relu neurons, providing us with the notebook’s namesake: an intermediate-depth neural network. With a call to model.summary(), you can see from Figure 8.9 that this additional layer corresponds to an additional 4,160 trainable parameters relative to our shallow architecture (refer to Figure 7.5). We can break these parameters down into:

  • 4,096 weights, corresponding to each of the 64 neurons in the second hidden layer densely receiving input from each of the 64 neurons in the first hidden layer (64 × 64 = 4,096)

  • Plus 64 biases, one for each of the neurons in the second hidden layer

  • Giving us a total of 4,160 parameters: nparameters = nw + nb = 4,096 + 64 = 4,160

FIGURE 8.9

FIGURE 8.9 A summary of the model object from our Intermediate Net in Keras Jupyter notebook

In addition to changes to the model architecture, we’ve also made changes to the parameters we specify when compiling our model, as shown in Example 8.2.

Example 8.2 Keras code to compile our intermediate-depth neural network

model.compile(loss='categorical_crossentropy',
              optimizer=SGD(lr=0.1),
              metrics=['accuracy'])

With these lines from Example 8.2, we:

  • Set our loss function to cross-entropy cost by using loss='categorical_crossentropy' (in Shallow Net in Keras, we used quadratic cost by using loss='mean_squared_error')

  • Set our cost-minimizing method to stochastic gradient descent by using optimizer=SGD

  • Specify our SGD learning rate hyperparameter η by setting lr=0.118

  • Indicate that, in addition to the Keras default of providing feedback on loss, by setting metrics=['accuracy'], we’d also like to receive feedback on model accuracy19

sidebar-trilobite_attention.jpg

Finally, we train our intermediate net by running the code in Example 8.3.

Example 8.3 Keras code to train our intermediate-depth neural network

model.fit(X_train, y_train,
          batch_size=128, epochs=20,
          verbose=1,
          validation_data=(X_valid, y_valid))

Relative to the way we trained our shallow net (see Example 5.7), the only change we’ve made is reducing our epochs hyperparameter from 200 down by an order of magnitude to 20. As you’ll see, our much-more-efficient intermediate architecture required far fewer epochs to train.

Figure 8.10 provides the results of the first three epochs of training the network. Recalling that our shallow architecture plateaued as it approached 86 percent accuracy on the validation dataset after 200 epochs, our intermediate-depth network is clearly superior: The val_acc field shows that we attained 92.34 percent accuracy after a single epoch of training. This accuracy climbs to more than 95 percent by the third epoch and appears to plateau around 97.6 percent by the twentieth. My, how far we’ve come already!

FIGURE 8.10

FIGURE 8.10 The performance of our intermediate-depth neural network over its first four epochs of training

Let’s break down the verbose model.fit() output shown in Figure 8.10 in further detail:

  • The progress bar shown next fills in over the course of the 469 “rounds of training” (Figure 8.5):

    60000/60000 [==============================]
  • 1s 15us/step indicates that all 469 rounds in the first epoch required 1 second to train, at an average rate of 15 microseconds per round.

  • loss shows the average cost on our training data for the epoch. For the first epoch this is 0.4744, and, epoch over epoch, this cost is reliably minimized via stochastic gradient descent (SGD) and backpropagation, eventually diminishing to 0.0332 by the twentieth epoch.

  • acc is the classification accuracy on training data for the epoch. The model correctly classified 86.37 percent for the first epoch, increasing to more than 99 percent by the twentieth. Because a model can overfit to the training data, one shouldn’t be overly impressed by high accuracy on the training data.

  • Thankfully, our cost on the validation dataset (val_loss) does generally decrease as well, eventually plateauing as it approaches 0.08 over the final five epochs of training.

  • Corresponding to the decreasing cost of the validation data is an increase in accuracy (val_acc). As mentioned, validation accuracy plateaued at about 97.6 percent, which is a vast improvement over the 86 percent of our shallow net.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020