Home > Articles

This chapter is from the book

The Power of Stories

We’ve established that data stories are powerful, and that they are powerful because of their ability to communicate information, generate understanding and knowledge, and stick in our brains. However, as information assets, visual data stories have a few other noteworthy qualities.

But first, let’s set the record straight. There is much to be said about how visual data stories creating meaning in a time of digital data deluge, but it would be careless to relegate data storytelling to the role of “a fun new way to talk about data.” In fact, it has radically changed the way we talk about data (though certainly not invented the concept). The traditional charts and graphs we’ve always used to represent data are still helpful because they help us to better visually organize and understand information. They’ve just become a little static. With today’s technology, fueled by today’s innovation, we’ve moved beyond the mentality of gathering, analyzing, and reporting data to collecting, exploring, and sharing information—rather than simply rendering data visually we are focused on using these mechanisms to engage, communicate, inspire, and make data memorable. No longer resigned to the tasks of beautifying reports or dashboards, data visualizations are lifting out of paper, coming out of the screen, and moving into our hearts, minds, and emotions. The ability to stir emotion is the secret ingredient of visual data storytelling, and what sets it apart from the aforementioned static visual data renderings.

As we’ll explore in later chapters, emotional appeal isn’t enough to complete a meaningful visual data story. Like any good tale, a data story requires an anchor, or a goal—be it a reveal, a call to action, or an underlying message—to pass to its audience. This idea isn’t unique to data storytelling by any means, but a construct applied to all varieties of stories. When a story imprints on our memory, it requires emotion plus a willingness to act on that emotion.

Instead of talking about the power of visual data stories, let’s see them in action. As we do, we’ll be looking for the following key takeaways:

  • Sometimes the only way to see the story in data is visually.

  • A good story should meet its goals—and it should be actionable.

  • A story should change, challenge, or confirm the way you think.

  • Storytelling evolves—don’t be afraid to try something new.

The Classic Visualization Example

One of the core tenants of a visual data story is that it uses different forms of data visualization—charts, graphs, infographics, and so on—to bring data to life. Perhaps one of the most archetypal examples of the power of data visualization to help people see and understand data in ways they never would by looking at rows and columns of raw black and white data comes from Anscombe’s Quartet (see Figure 2.3). Constructed in 1973 by statistician Francis Anscombe, these four datasets appear identical when compared by their summary statistics. If you review the table, you will notice that each dataset has the same mean of both X and Y, the same standard deviation, the same correlation, and the same linear regression equation.

Figure 2.3

Figure 2.3 Four seemingly identical datasets known as Anscombe’s Quartet.

Even though the individual variables are different, if the statistical outputs are the same, we would expect these, when graphed, to look the same. The “story” for each of these datasets should be the same—right? Wrong.

When graphed (see Figure 2.4), we can see beyond the limitations of basic statistical properties for describing data, and can tell a bigger picture of the datasets and the relationships therein.

Anscombe’s example might be classic in terms of putting some support behind visual horsepower, but it only brushes the tip of the iceberg in terms of visual data storytelling. Although we might not yet have everything we need to tell a story, we can start to see that the sets are not so similar as they might appear, and there is something worth talking about in these datasets. We know there is a story there, and we know we need to visualize it to see it, but we are still left wanting. This isn’t quite a visual data story, but it’s definitely a first step.

Figure 2.4

Figure 2.4 Anscombe’s Quartet, visualized.

Using Small Personal Data for Big Stories

When it comes to telling a story, no one knows how to do it better than Hollywood—except maybe networks like Netflix and AMC that are using massive amounts of consumer-generated data as recipes to create new content.

Graphic designer Chelsea Carlson decided to take this approach to a personal level. In a 2016 experiment, Chelsea focused on analyzing her personal Netflix viewing habits to see what story her own data might tell about her television binging habits, tastes and preferences, and—perhaps more important in a streaming TV market saturated with more new shows every day—possibly even help her predict a new favorite by telling her exactly what to look for (this, by the way, is not too unlike how Netflix is using its user viewing data to curate new shows).

Like many analysts, Chelsea began her experiment by collecting and organizing her Netflix viewing data in spreadsheets organized in Microsoft Excel. She tracked several variables on her top 27 favorite shows, including things like genre, language, main character gender, episode length, IMDB rating, and more (see Figure 2.5). As a tool, a color-coded spreadsheet helped Chelsea get a bird’s eye view of some of the interesting patterns and trends in her data (like whether she seemed to prefer multi-season shows or if her favor aligned with award winners) as well as areas where her tastes were less predictable (no preference for age and race of the lead character or the show’s setting or length). However, this was the extent of meaningful analysis that Chelsea could achieve when limited to scouring rows and columns of information—even colored ones (see the upcoming sidebar “Color Cues”).

Like Anscombe’s Quartet, when Chelsea plotted her data it transformed beyond its meager Excel boundaries and moved into the realm of visual storytelling, this time showing a much richer tale (see Figure 2.6).

Figure 2.5

Figure 2.5 Chelsea Carson’s Netflix data spreadsheet, in table form.

Figure 2.6

Figure 2.6 Chelsea Carlson’s Netflix data visualized.

As a visual storyteller, Chelsea worked through visual discovery and a variety of graph types that included scatter plots, packed bubble charts, timelines, and even pie charts to build her data story. She also integrated expressive visual elements—particularly size and color—to provide visual cues to assign meaning to the visualization and highlight certain insights. As a result, Chelsea was able to come away with a rich visual data story encapsulated within a series of very deliberately crafted visualizations. There are several interesting story points to pick out within this visualization—including a strong bias for costume dramas and shows cut short—and you can explore them for yourself in the URL included. However, perhaps the most salient point is that through this story Chelsea can take action on the goals she set for this visual story. She can clearly see her tastes and preferences, and when she goes scrolling through Netflix for her next binge-worthy show, she’ll know to look for a female-led costume drama with a genre-bending storyline.

The Two-or-Four Season Debate

In school, we’re taught that a full year includes four distinct seasons—spring, summer, fall, and winter. Yet, some people argue that only two true seasons exist—summer and winter—and they’re using a form of visual data storytelling (and a good heaping of rationality) to prove their point. My favorite of these comes from artificial intelligence researcher Nate Soares’ blog, Minding Our Way.2

The item up for debate in this story is a simple one: Is it fair to qualify “waxing summer” (also known as spring) and “waning summer”” (also known as autumn) as full seasons? Sure, it’s familiar and if you live in the northern hemisphere you can likely distinguish the seasons according to their observable natural phenomena—such as their colorful transitions—flowers blooming or leaves changing color—rather than their actual astronomical dates (and this doesn’t even begin to open the conversation on astronomical versus meteorological dates of change3).

Let’s begin to build a story around this and see where we end up. First let’s agree on a foundation: The year follows a seasonal cycle that starts cold and gets progressively warmer until it peaks and begins to cool again. Repeat. Right? This is a pretty basic assumption. More importantly, it’s one that we can successfully chart—loosely and without requiring any more specific data or numbers at all. Rather, we’ll use points from the basic story premise we laid out earlier to graph a seasonal continuum for the year, using length of daylight as our curve (see Figure 2.9). From there, we can try to decide just how many seasons are really in a year.

Figure 2.9

Figure 2.9 The seasonal cycle of a single year.

How many curves does the orange line trace? The answer, obviously, is two—hence the two-season viewpoint (see Figure 2.10).

Figure 2.10

Figure 2.10 Two seasons.

Now, we could break this down further with more information. We could add in astronomical dates or mull over geographic differences in weather or meteorology. However, whether or not you agree with Nate and me (and others!) on the number of qualifying seasons that occur over the course of one year, the preceding two graphs represent a powerful data story—and they don’t even require the type of “hard data” (rows and columns of numbers) that we would typically expect. This shows us—quite literally—that to tell a great story doesn’t necessarily require a ton of data. It just requires a few points, a goal, and the creativity to visualize it for your audience in a way that affects their opinion.

Napoleon’s March

As I’ve mentioned, using visualizations to tell stories about data is not a new technique. French civil engineer Charles Joseph Minard has been credited for several significant contributions in the field of information graphics, among them his very unique visualizations of two military campaigns—Hannibal’s march from Spain to Italy some 2,200 years ago and Napoleon’s invasion of Russia in 1812. Both of these visualizations were published in 1869 when Minard was a spry 88 years old.

Minard’s flow map of Napoleon’s invasion of Russia (see Figure 2.11)—unofficially titled “Napoleon’s March by Minard”—tells the story of Napoleon’s army, particularly its size (by headcount) as it made its way from France to Russia and home again. As you read this visualization, moving left to right, the beige ribbon thins, signaling the waning of Napoleon’s army from 422,000 to 100,000 as they marched east, during the winter, to Moscow. The army turned around and retreated, returning to France with a mere 10,000 men. We can move through the visualization, imagining the soldiers’ journey and peril as they hiked through increasingly inhospitable and unfamiliar territory, turning around and coming home, losing more than 400,000 comrades on the way to war, cold, and disease.

Figure 2.11

Figure 2.11 Napoleon’s 1812 March by Minard, 1869.

Obviously, this was not a successful war, and as an analysis piece Minard’s map is not a successful one analytically. However, as a visual story around human drama, it has earned the distinction of becoming known as one of the best storytelling examples in history. You would be hard pressed to take a data visualization class today and not experience Napoleon’s march. It’s fair to note, too, that several analysts have tried to recreate it, using more common statistical methods but all fall short of the original’s storytelling appeal.

Minard’s second military visualization, Hannibal’s journey through the Alps (not pictured), is similar in concept to Napoleon’s march, although it didn’t quite pull off the same memorable story. Most stories have an inherent amount of entropy—we need to tell them quickly and succinctly, and many times this means we only get one chance. In fact, numerous examples of this “once and done” effect exist in more modern visual data stories, too. These one-hit wonders are an expected consequence of good stories. Sometimes we only need to tell them once—no sequels necessary.

Stories Outside of the Box

Thus far we’ve looked at some of the most classic examples of visual data stories to those more modern. We’ve even looked at visual data storytelling without data in the classic sense. Now, let’s finish our tour of the power of visual data storytelling with one of the most quintessential instances on the books: Nigel Holmes’ “Monstrous Costs” (see Figure 2.12).

Figure 2.12

Figure 2.12 Nigel Holmes’ Monstrous Costs.

This hand-drawn illustration does exactly what a visual data story is supposed to do: It transforms boring data into something alive. At its core, this data visualization is little more than a bar chart that shows rising costs on political campaign expenditures, but it’s the storytelling detail that gives it the flair that has made it such a powerful example. It weaves a story around the data, anthropomorphizing these costs from dollars and cents to a ravenous beast, replete with jagged teeth and flying spittle. As with the Napoleon’s March by Minard graph, we’ll take a much closer and more critical look at this story in a later chapter, but for now the lesson is simply that visual stories come in all shapes and sizes, some more technical looking and some so unique and personalized that they are barely recognizable as visualizations.

What masterful storytellers can do is to straddle that balance, and capitalize on the best features to tell their story. In Monstrous Costs, these features allow the image to hook into memory, clearly telling the story of rising campaign costs with the intended emotion of the storyteller.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020