Fluid Mechanics for Chemical Engineers
- 1.1 Fluid Mechanics in Chemical Engineering
- 1.2 General Concepts of a Fluid
- 1.3 Stresses, Pressure, Velocity, and the Basic Laws
- 1.4 Physical Properties-Density, Viscosity, and Surface Tension
- 1.5 Units and Systems of Units
- 1.6 Hydrostatics
- 1.7 Pressure Change Caused by Rotation
- Problems for Chapter 1
A complete introduction to the concepts and properties of fluid mechanics for chemical engineers.
Save 35% off the list price* of the related book or multi-format eBook (EPUB + MOBI + PDF) with discount code ARTICLE.
* See informit.com/terms
1.1 Fluid Mechanics in Chemical Engineering
A knowledge of fluid mechanics is essential for the chemical engineer because the majority of chemical-processing operations are conducted either partly or totally in the fluid phase. Examples of such operations abound in the biochemical, chemical, energy, fermentation, materials, mining, petroleum, pharmaceuticals, polymer, and waste-processing industries.
There are two principal reasons for placing such an emphasis on fluids. First, at typical operating conditions, an enormous number of materials normally exist as gases or liquids or can be transformed into such phases. Second, it is usually more efficient and cost-effective to work with fluids in contrast to solids. Even some operations with solids can be conducted in a quasi-fluidlike manner; examples are the fluidized-bed catalytic refining of hydrocarbons and the long-distance pipelining of coal particles using water as the agitating and transporting medium.
Although there is inevitably a significant amount of theoretical development, almost all the material in this book has some application to chemical processing and other important practical situations. Throughout, we shall endeavor to present an understanding of the physical behavior involved; only then is it really possible to comprehend the accompanying theory and equations.