Home > Articles > Programming > Java

This chapter is from the book

SOAP Intermediaries

So far, we have addressed SOAP headers as a means for vertical extensibility within SOAP messages. There is another related notion, however: horizontal extensibility. Vertical extensibility is about the ability to introduce new pieces of information within a SOAP message, and horizontal extensibility is about targeting different parts of the same SOAP message to different recipients. Horizontal extensibility is provided by SOAP intermediaries.

The Need for Intermediaries

SOAP intermediaries are applications that can process parts of a SOAP message as it travels from its origination point to its final destination point (see Figure 3.7). Intermediaries can both accept and forward SOAP messages. Three key use-cases define the need for SOAP intermediaries: crossing trust domains, ensuring scalability, and providing value-added services along the SOAP message path.

Figure 3.7 Intermediaries on the SOAP message path.

Crossing trust domains is a common issue faced while implementing security in distributed systems. Consider the relation between a corporate or departmental network and the Internet. For small organizations, it is likely that the IT department has put most computers on the network within a single trusted security domain. Employees can see their co-workers computers as well as the IT servers and they can freely exchange information between them without the need for separate logons. On the other hand, the corporate network probably treats all computers on the Internet as part of a separate security domain that is not trusted. Before an Internet request reaches the network, it needs to cross from its untrustworthy domain to the trusted domain of the network. Corporate firewalls and virtual private network (VPN) gateways are the Cerberean guards of the gates to the network's riches. Their job is to let some requests cross the trust domain boundary and deny access to others.

Another important need for intermediaries arises because of the scalability requirements of distributed systems. A simplistic view of distributed systems could identify two types of entities: those that request some work to be done (clients) and those that do the work (servers). Clients send messages directly to the servers with which they want to communicate. Servers, in turn, get some work done and respond. In this naïve universe, there is little need for distributed computing infrastructure. Alas, you cannot use this model to build highly scalable distributed systems.

Take basic e-mail as an example—the service we've grown to depend on so much in the Net era. When someone@company.com sends an e-mail message to myfriend@london.co.uk, it is definitely not the case that their e-mail client locates the mail server london.co.uk and sends the message to it. Instead, the client sends the message to its e-mail server at company.com. Based on the priority of the message and how busy the mail server is, the message will leave either by itself or in a batch of other messages. Messages are often batched to improve performance. It is likely that the message will make a few hops through different nodes on the Internet before it gets to the mail server in London.

The lesson from this example is that highly scalable distributed systems (such as e-mail) require flexible buffering of messages and routing based not only on message parameters such as origin, destination, and priority but also on the state of the system measured by parameters such as the availability and load of its nodes as well as network traffic information. Intermediaries hidden from the eyes of the originators and final recipients of messages perform all this work behind the scenes.

Last but not least, you need intermediaries so that you can provide value-added services in a distributed system. The type of services can vary significantly. Here are a couple of common examples:

  • Securing message exchanges, particularly when transmitting messages through untrustworthy domains, such as using HTTP/SMTP on the Internet. You could secure SOAP messages by passing them through an intermediary that first encrypts them and then digitally signs them. On the receiving side, an intermediary will perform the inverse operations—checking the digital signature and, if it is valid, decrypting the message.

  • Providing message-tracing facilities. Tracing allows the recipient of messages to find out the exact path that the message went through complete with detailed timings of arrivals and departures to and from intermediaries along the way. This information is indispensable for tasks such as measuring quality of service (QoS), auditing systems, and identifying scalability bottlenecks.

Intermediaries in SOAP

As the previous section has shown, intermediaries are an extremely important concept in distributed systems. SOAP is specifically designed with intermediaries in mind. It has simple yet flexible facilities that address the three key aspects of an intermediary-enabled architecture:

  • How do you pass information to intermediaries?

  • How do you identify who should process what?

  • What happens to information that is processed by intermediaries?

From the discussion of intermediaries, you can see that most of the information that intermediaries require is completely orthogonal to the information contained in SOAP message bodies. For example, whether logging of inventory check requests is enabled or not is irrelevant to the inventory check service. Therefore, only information in SOAP headers can be explicitly targeted at intermediaries. The question then becomes one of deciding how to target the recipient of a particular header. This does not mean that an intermediary cannot look at, process, or change the SOAP message body; it certainly can do that. However, SOAP itself defines no mechanism to instruct an intermediary to do that. Contrast this to a SOAP message explicitly targeting a piece of information contained in a SOAP header at an intermediary with the understanding that it must at least attempt to process it.

All header elements can optionally have the SOAP-ENV:actor attribute. The value of the attribute is a URI that identifies who should handle the header entry. Essentially, that URI is the "name" of the intermediary. The special value http://schemas.xmlsoap.org/soap/actor/next indicates that the header entry's recipient is the next SOAP application that processes the message. This is useful for hop-by-hop processing required, for example, by message tracing. Of course, omitting the actor attribute implies that the final recipient of the SOAP message should process the header entry. The message body is intended for the final recipient of the SOAP message.

The issue of what happens to a header that is processed by an intermediary is a little trickier. The SOAP specification states, "the role of a recipient of a header element is similar to that of accepting a contract in that it cannot be extended beyond the recipient." This means that the intermediary should remove any header targeted for it that it has processed and it is free to introduce a new header in the message that looks the same but then this constitutes a contract between the intermediary and the next application. The goal here is to reduce system complexity by requiring that contracts about the presence, absence, and content of information in SOAP messages be very narrow in scope—from the originator of that information to the first SOAP application that handles it and not beyond.

Putting It All Together

To get a better sense of how you might use intermediaries in the real world, let's consider the potentially realistic albeit contrived example of SkatesTown's overall B2B integration architecture. Please keep in mind that all XML in the example is purely fictional—currently there isn't a standardized way to handle security and routing of SOAP messages.

SkatesTown needs to integrate various applications in several of its departments with some of its partners' applications (see Figure 3.8). Silver Bullet Consulting started working with the purchasing department building Web services to automate business functions such as checking inventory. Following the success of this engagement, Silver Bullet Consulting has been asked to use Web services to automate processes in other departments such as customer service. SkatesTown's corporate IT department is demanding centralized control over the entry point of all Web service requests to the company. They also require that all SOAP messages be transmitted over HTTPS for security reasons.

Figure 3.8 SkatesTown's system integration architecture.

At the same time, individual departments demand that their own IT units control the servers that run their own Web services. These servers have their own trust domains and are sitting deep inside the corporate network, invisible to the outside world. To address this issue, Silver Bullet Consulting develops a partner interface gateway SOAP application that acts as an intermediary between the partner applications sending SOAP messages and the department-level applications that are handling them. The gateway application is hosted on an application server that is visible to the partner applications. This server is managed by the corporate IT department. A firewall is configured to allow access to the gateway application from the partner networks only.

The gateway application has the responsibility to validate partners' security credentials and to route messages to the appropriate departmental SOAP applications. Security information and department server locations are available from SkatesTown's enterprise directory.

Here is an example message the gateway application might receive:

POST /bws/inventory/InventoryCheck HTTP/1.0
Host: partnergateway.skatestown.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "/doCheck"

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope 
   SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
   xmlns:xsd="http://www.w3.org/2001/XMLSchema"
   xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
   <SOAP-ENV:Header>
       <td:TargetDepartment
         xmlns:td="http://www.skatestown.com/ns/partnergateway"
         SOAP-ENV:actor="urn:X-SkatesTown:PartnerGateway"
         SOAP-ENV:mustUnderstand="1">
           Purchasing
       </td:TargetDepartment>
       <ai:AuthenticationInformation
         xmlns:ai="http://www.skatestown.com/ns/security"
         SOAP-ENV:actor="urn: X-SkatesTown:PartnerGateway"
         SOAP-ENV:mustUnderstand="1">
           <username>PartnerA</username>
           <password>LongLiveSOAP</password>
       </ai:AuthenticationInformation>
   </SOAP-ENV:Header>
   <SOAP-ENV:Body>
      <doCheck>
         <arg0 xsi:type="xsd:string">947-TI</arg0>
         <arg1 xsi:type="xsd:int">1</arg1>
      </doCheck>
   </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

There are two header entries. The first identifies the target department as purchasing, and the second passes the authentication information of the message originator, partner A in this case. Both header entries are marked with mustUnderstand="1" because they are critical to the successful processing of the message. The partner gateway application is identified by the actor attribute as the place to process these.

After processing the message, the partner gateway application might forward the following message:

POST /bws/services/InventoryCheck HTTP/1.0
Host: purchasing.skatestown.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "/doCheck"

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope 
   SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
   xmlns:xsd="http://www.w3.org/2001/XMLSchema"
   xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
   <SOAP-ENV:Header>
      <cc:ClientCredentials
         xmlns:cc="http://schemas.security.org/soap/security"
         SOAP-ENV:mustUnderstand="1">
         <ClientID>/External/Partners/PartnerA</ClientID>
      </cc:ClientCredentials>
   </SOAP-ENV:Header>
   <SOAP-ENV:Body>
      <doCheck>
         <arg0 xsi:type="xsd:string">947-TI</arg0>
         <arg1 xsi:type="xsd:int">1</arg1>
      </doCheck>
   </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note how the previous two header entries have disappeared. They were meant for the gateway application only. Having extracted the purchasing department's location from the enterprise directory, the gateway application forwards the message to purchasing.skatestown.com. A new header entry is meant for the final recipient of the message. The entry specifies the security identity of the message originator as /External/Partners/PartnerA. This identity was presumably obtained from SkatesTown's security system following the successful authentication of partner A. The applications in the purchasing department will use this identity to check whether partner A is authorized to perform the operation requested in the SOAP message body.

This example scenario shows that intermediaries bring significant capabilities to SOAP-enabled applications and can be introduced and implemented at a fairly low cost. The inventory check service implementation does not need to change. The partner gateway does not need to know anything about inventory checking; it only understands the target department and authentication headers. Inventory check clients only need to add a couple of headers to the messages they are sending to fit in the new architecture.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020