Home > Articles

Motors for Makers: Introduction to Stepper Motors for Motion Control

Due to their simplicity and precision, steppers are popular in electrical devices. Analog clocks, manufacturing robots, and printers (2D and 3D) rely on steppers for motion control. This chapter from Motors for Makers: A Guide to Steppers, Servos, and Other Electrical Machines discusses stepper motors, including permanent magnet (PM) steppers, variable reluctance (VR) steppers, hybrid (HY) steppers, and stepper control.
This chapter is from the book

In this and the following chapter, the primary concern is motion control—making sure the motor turns with a specific angle and/or speed. This book discusses two types of motors intended for motion control: stepper motors and servomotors. I’ll refer to them as steppers and servos, respectively, and this chapter focuses on steppers.

A stepper’s purpose is to rotate through a precise angle and halt. The speed and torque of the rotation are secondary concerns. As long as the stepper rotates through the exact angle and stops, its mission is accomplished. Each turn is called a step, and common step angles include 30°, 15°, 7.5°, 5°, 2.5°, and 1.8°.

Due to their simplicity and precision, steppers are popular in electrical devices. Analog clocks, manufacturing robots, and printers (2D and 3D) rely on steppers for motion control. An important advantage is that the controller doesn’t have to read the stepper’s position to determine its orientation. If the stepper is rated for 2.5°, each control signal will turn the rotor through an angle of 2.5°.

For many applications, we want the step angle to be as small as possible. The smaller the motor’s step angle, the greater its angular resolution. Another important figure of merit is torque, particularly holding torque. A stepper is expected to hold its position when it comes to a halt, and holding torque identifies the maximum torque it can exert to maintain its position.

Modern steppers can be divided into three categories:

  • Permanent motor (PM)—High torque, poor angular resolution
  • Variable reluctance (VR)—Excellent angular resolution, low torque
  • Hybrid (HY)—Combines structure of PM and VR steppers, provides good torque and angular resolution

The first part of this chapter examines these categories in detail. In each case, I’ll discuss the motor’s fundamental operation and present its advantages and disadvantages. The last part of the chapter explains how steppers can be controlled with electrical circuits.

4.1 Permanent Magnet (PM) Steppers

Small and reliable, permanent magnet (PM) steppers are popular in embedded devices such as disk drives and computer printers. Figure 4.1 depicts the ST-PM35 stepper from Mercury Motor.

Figure 4.1

Figure 4.1 A permanent magnet (PM) stepper motor

PM steppers have a lot in common with the brushless DC (BLDC) motors discussed in the preceding chapter. In fact, you can think of a PM stepper as a BLDC whose windings are energized to provide discrete rotation instead of continuous rotation.

4.1.1 Structure

The preceding chapter introduced the brushless DC motor and its two subcategories: inrunners and outrunners. PM steppers are similar to inrunners in many respects, and a good way to introduce them is to compare and contrast them with inrunner BLDCs. Figure 4.2 illustrates the internal structure of a simple PM stepper.

Figure 4.2

Figure 4.2 Internal structure of a permanent magnet (PM) stepper motor

There are five important similarities between PM steppers and inrunner BLDCs:

  • Neither motor has a brush or a mechanical commutator (all steppers discussed in this book are brushless).
  • The rotor is on the inside, with permanent magnets mounted on its perimeter.
  • The stator is on the outside, with electromagnets (called windings) inside slots.
  • The controller energizes the windings with pulses of DC current.
  • Many of the windings are connected together. Each group of connected windings forms a phase.

PM steppers are brushless and receive DC pulses from the controller. For this reason, they could be classified as BLDCs. But in this book, as in other literature, we’ll only employ the term BLDC for motors that aren’t specifically intended for motion control.

Let’s look at the differences between the two types of motors. Table 4.1 contrasts the characteristics of PM steppers with those of inrunner BLDCs.

Table 4.1 Contrasting Characteristics of PM Steppers and Inrunner BLDCs

PM Stepper

Inrunner BLDC

Intended for discrete rotation.

Intended for continuous rotation.

Almost always has two phases.

Almost always has three phases.

Controller energizes one or two phases at a time.

Controller energizes two phases at a time and leaves third phase floating.

Many windings and rotor magnets.

Few windings and rotor magnets.

From a structural perspective, the primary difference between PM steppers and inrunners is that PM steppers have more windings and rotor magnets. As it turns out, this is necessary to make the angular resolution as small as possible. The following discussion explains why this is the case.

4.1.2 Operation

To understand how a PM stepper operates, it’s crucial to see how its step angle is determined by the number of windings and rotor magnets. This discussion focuses on the motor depicted in Figure 4.2. Its stator has 12 windings and its rotor has six magnets mounted on its perimeter.

PM steppers are generally two-phase motors. In the figure, the different phases are denoted A and B. The windings labeled A’ and B’ receive the same current as those labeled A and B, but in the opposite direction. That is, if A behaves as a north pole, A’ behaves as a south pole.

Each winding has one of three states: positive current, negative current, and zero current. For this discussion, positive current implies a north pole and negative current implies a south pole.

Now let’s see how these motors operate. Figure 4.3 illustrates a single turn of a PM stepper. In the windings, a small “N” implies that the winding behaves like a north pole due to positive current. A small “S” implies that the winding behaves like a south pole due to negative current. If a winding doesn’t have an N or S, it isn’t receiving current.

Figure 4.3

Figure 4.3 30° rotation of a PM stepper motor

In Figure 4.3a, A is positive (north pole), A’ is negative (south pole), and Phase B isn’t energized. The rotor aligns itself so that its south poles are attracted to the A windings and its north poles are attracted to the A’ windings.

In Figure 4.3b, B is positive (north pole), B’ is negative (south pole), and Phase A isn’t energized. The rotor rotates so that its poles align with the B and B’ windings. The rotation angle equals the angle between the A and B windings, which means the rotor turns exactly 30° in the clockwise direction. This arrangement of eight windings and six poles is common for PM stepper motors, though others turn at angles of 15° and 7.5°.

In case this isn’t clear, let’s look at a second movement. Figure 4.4 presents another 30° rotation of a PM stepper motor.

Figure 4.4

Figure 4.4 Further rotation of a PM stepper motor

In Figure 4.4a, B is negative (south pole), B’ is positive (north pole), and A isn’t energized. The rotor is positioned so that its poles align with the B windings.

In Figure 4.4b, A is positive (north pole), A’ is negative (south pole), and B isn’t energized. The rotor turns exactly 30° in the clockwise direction to align itself between the A windings.

The controller’s job is to deliver current to the windings so the rotor continues turning in 30° increments. The difference in control signaling is a major difference between steppers and BLDCs. The last part of this chapter discusses the circuitry needed to govern a stepper’s operation.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020