Home > Articles > Mobile Application Development & Programming

This chapter is from the book

Unique Challenges for Development of Engaging Applications

The creation of systems of interaction involves some unique requirements and challenges.

Most of the rest of this book provides an in-depth view of IBM’s recommendations for planning, developing, testing, and deploying mobile applications. Some of those recommendations are echoed in the following paragraphs, and you can refer to the later chapters for more details.

Form Factors and User Input Technology

The first and most obvious aspect of mobile applications is that the form factor for display and user interaction is significantly different from what is used by other forms of software. A smaller form factor means that the amount of data displayed to the end user, and layout of that data, needs to be tuned to the “real estate” available on the device. Significantly less data may be displayed on some devices and therefore it must be exactly the “right” data (most relevant to what the user needs at that point in the application). This variety in form factors motivates the “responsive design” approach for application presentation, where the same application takes advantage of the display resources available on the device where it is running.

Another obvious physical difference for mobile applications is that the mechanisms for user input are different. Mobile devices have pioneered the use of nonkeyboard “gestures” (e.g., touch, swipe, and pinch) as an effective and popular method of user input. Gestures must be planned for and supported for a satisfying mobile application user experience. In addition to tactile user input, mobile devices are a natural target for voice based user input. In fact, the traditional keyboard typing form of user input is probably the least effective and least popular mechanism for input to the new systems of interaction.

Besides gathering input directly from the end user, new systems of interaction have the capability to receive input from other sources such as geo-location from the GPS component of the device and image information from the camera typically built into the device. These forms of input make mobile apps more powerful and useful than applications with a more limited array of input possibilities, and they must be considered during mobile application design and development.

Usability and User Interaction Design

There are several reasons why usability and user interaction need greater attention in the design of mobile applications. The difference in form factors and user input methods is one. It is much more difficult and time consuming to plan how to display only the data that is precisely necessary than it is to simply display all possible data and let the user visually sift through it for what they want. The mobile app designer, by contrast, has to consider the screen real estate. When an application needs to present a broader scope of data with multiple layers of detail, it is usually better to use a progressive discovery approach that allows the user to “drill down” into incrementally greater levels of detail focused on fewer specific items.

The rich variety of input methods available on mobile devices is another reason that early design work must identify and leverage more efficient ways for input data to be delivered than the simple “just type it in a form” design, which is a default for traditional web and PC applications. Designers must avoid extensive keyboard typing for mobile apps in order to reduce end user frustration (with drastically smaller touch keyboards and lack of traditional typing feedback). Yet, identifying nonkeyboard ways in which information can be gathered and delivered to the mobile app is a significant design challenge.

In addition, there is still a more subtle reason for paying extra attention to the mobile app design effort. The way in which end users interact with mobile devices and the applications running on them is different from how they interact with stationary PCs (and even laptops). Mobile device users typically hold the device in their hand while also interacting with the immediate circumstances of their physical situation. Mobile users typically cannot concentrate on the mobile app for very long before switching attention to their physical surroundings. The interaction model for users of mobile apps is short, interrupted, and “bursty” (meaning that they need to complete the application task very quickly before switching attention).

All of these factors drive the need for applying user-centered design very early in the mobile app development project. Ideally these usability and design considerations should be codified in the requirements for the mobile application, and then linked to the later stage development deliverables, along with the tests that validate that the user interaction and “consume-ability” of the app is as satisfying as possible.

Choice of Implementation Technology

There is a spectrum of implementation choices for mobile applications on the market, and no one answer is perfect for all situations—each choice has its advantages and disadvantages. So the challenge for mobile development teams is to understand the trade-offs between the technologies, and make a choice based on the specific application requirements.

The choice of implementation technology for a mobile project impacts other decisions related to the application’s development, including:

  • Limiting choices for development tools
  • Team roles and structure
  • How the application is tested and verified
  • How the app is distributed and delivered to the end user

So, the choice of implementation approach for a mobile application is crucial, and this early stage decision needs to be made very carefully.

Native Application Implementation

A “native” implementation means you are writing the application using the programming language and programmatic interfaces exposed by the mobile operating system of a specific type of device. For instance, a native implementation for an iPhone will be written using the Objective-C language (or more recently the Swift programming language) and the iOS operating system APIs that Apple supplies and supports.

Native application implementation has the advantage of offering the highest fidelity with the mobile device. Because the APIs used are at a low level and are specific to the device for which the application is dedicated, the application can take full advantage of every feature and service exposed by that device.

However, native mobile app implementations are completely nonportable to any other mobile operating system—for example, a native Apple iOS app must be totally rewritten if it is to run on an Android device. That makes this native implementation a very costly way of producing a mobile business application.

Web Applications

Newer smart phones and tablets come with advanced web browsers preinstalled, and it is relatively easy to implement a standard web application with special style sheets to accommodate the mobile form factor and approximate the mobile device “look and feel.” Mobile applications implemented using this approach support the widest variety of mobile devices, since web browser support for JavaScript and HTML5 is fairly consistent. There are several commercial and open source libraries of Web 2.0 widgets that help with this approach. In addition, the web programming model for mobile application implementation has an advantage for enterprises that already have developers trained in the languages and techniques for web application development.

The disadvantage of pure web application implementation is that such apps have no access to functions/features that run directly on the mobile device, such as the camera, contact list, and so forth.

Hybrid Mobile Application Implementation

Hybrid mobile application implementation is a compromise between pure native implementation and pure web implementation. You write the mobile apps using industry standard web programming languages and techniques such as HTML5 and JavaScript, but you package the app into a natively installable format that is distributed via the app store mechanism.

Hybrid apps are linked with additional native libraries that allow the app to have access to native device features from the single application code base. Because the bulk of a hybrid application is implemented using device-agnostic technology, most of the code for the application is portable and reusable across many different mobile operating systems. However, small segments of native code can also be integrated with the hybrid app, which means that the developer can decide how much of the app implementation shares a common code base (using the web technology) and how much is device-specific customization (written in native code).

Mobile Application Build and Delivery

Because businesses want to deliver mobile applications into the market quickly, mobile development projects typically have extremely aggressive time lines. Inception-to-delivery time frames of a few months are common. The pressure to deliver mobile apps quickly results in the adoption of agile development methods for most mobile projects.

An important element in agile development practices is continuous integration and builds. Application changes that are delivered by developers need to be processed immediately for all of the mobile operating systems on which the application is required to execute. If the mobile application is a hybrid or native implementation, several different builds of the application need to be triggered each time a change set for the application is delivered by a developer. The build setup and configuration for each supported mobile environment will be different from the others, and it is most likely that a small “farm” of build servers will need to be provisioned and available to handle these builds of the mobile application for multiple operating systems.

Testing

Testing poses another huge challenge for mobile application development, because it represents a step-jump in complexity and cost over more traditional applications. Unlike traditional PC and Web applications, the range of potentially supported mobile devices and release levels is staggering. Test matrices for mobile projects commonly contain hundreds and even thousands of permutations of device, mobile OS level, network carrier, locale, and device orientation combinations.

There are more variables for mobile testing that are not relevant for other kinds of software. The same device model may function in a subtly different way when connected to a different carrier network. And the quality of the network connection can have profound impact on the behavior of a mobile application. Even the movement of the mobile device itself may be an important factor in the behavior of the application (some applications specifically exploit device movement).

The majority of mobile apps are based on multi-tier architecture, with the code running on the device itself serving as the “frontend” client to data, and the services supplied by more traditional middle-tier and data center representing the “backend.” Effective and comprehensive testing of mobile apps requires that all tiers of the application be addressed, not only the code on the mobile device. The setup and availability of test versions of the middle tier and backend services can present very large cost and complexity challenges for the testing of mobile applications.

Many mobile projects start by using manual testing approaches, which is the quickest way to begin testing. But you have to buy all of the various mobile devices that you plan to support with the app, and pay someone (likely a team of people) to tediously go through a written script of instructions describing the tests on each of those devices for every build of the application. While manual testing serves an important purpose in providing crucial usability feedback for the app, it is extremely expensive and inefficient.

As an alternative, there are mobile app testing solutions that rely on running an agent program on the device for interaction within an automated execution. This approach has the flexibility of using either real physical devices or emulators for testing, with the added efficiency of automation. However, the test team bears the costs of setting up the devices to be tested and installing the test agent on them.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020