Home > Articles > Data > SQL Server

In-Memory Optimization and the Buffer Pool Extension in SQL Server 2014

To take maximum advantage of the performance improvements that can be achieved from having your critical OLTP tables memory resident, Microsoft developed the In-Memory Optimization feature for SQL Server. Another feature introduced in SQL Server 2014 to take advantage of the lower costs and increased sizes of SSDs, is the Buffer Pool Extension feature. The authors of Microsoft SQL Server 2014 Unleashed discuss both of these exciting new features in this chapter.
This chapter is from the book

This chapter is from the book

With CPU speeds topping out and I/O rates maximized using solid state drives (SSDs), the next available strategy for increasing OLTP performance is through memory optimization. Databases, because of their size, typically reside on disk. Historically, main memory was significantly more expensive than disk, so typically the memory available for caching data was only a fraction of the size of the database. However, with the significantly reduced cost of system memory over the past 20 years, it’s become more financially feasible to install large amounts of memory in the server. It is now possible for most OLTP databases, or at least the most critical tables, to fit entirely into memory which reduces the performance impact of disk-based I/O, which in turn increases transaction speed performance.

To take maximum advantage of the performance improvements that can be achieved from having your critical OLTP tables memory resident, Microsoft developed the In-Memory Optimization feature for SQL Server. In-Memory Optimization, more commonly referred to as In-Memory OLTP, is the primary and most important new feature introduced in SQL Server 2014. This new feature (which you may sometimes hear referred to by its project code name Hekaton) is fully integrated into the SQL Server database engine.

Another feature introduced in SQL Server 2014 to take advantage of the lower costs and increased sizes of SSDs, is the Buffer Pool Extension feature. The Buffer Pool Extension feature provides the ability for SQL Server to use solid-state drives (SSD) as a non-volatile random access memory (NvRAM) to extend the size of the buffer pool. By offloading buffer cache I/Os from mechanical disk to SSDs, the Buffer Pool Extension feature can significantly improve I/O throughput because of the lower latency and better random I/O performance of SSDs.

These exciting new features for SQL Server are discussed in this chapter.

Overview of In-Memory OLTP

In-Memory OLTP allows OLTP workloads to achieve significant improvements in performance, and reduction in processing time. The In-Memory OLTP engine is completely integrated with the SQL Server database engine and can be accessed transparently via your SQL Server applications. However, the In-Memory OLTP components’ internal behavior and capabilities are different and distinct from the standard database engine components as shown in Figure 33.1

Figure 33.1

Figure 33.1 The SQL Server 2014 engine architecture with In-Memory OLTP.

Figure 33.1 shows that client applications connect to SQL Server the same way for memory-optimized tables or disk-based tables, whether it will be calling natively compiled stored procedures or interpreted Transact-SQL. Natively compiled stored procedures can only access memory-optimized tables, but interpreted T-SQL can access tables in either the buffer pool or memory-optimized tables using the interop capabilities. Notice also that memory-optimized tables do not share memory space with on-disk tables. Memory-optimized tables are stored completely differently than disk-based tables and these new data structures allow the data to be accessed and processed much more efficiently.

The main benefit of the SQL Server In-Memory OLTP architecture being integrated into the SQL Server engine is that you don’t have to refactor your entire system to split data between in-memory and conventional on-disk database access, nor move the entire database into memory. You can specify what is stored in-memory or on-disk on a table by table basis. This way you can move only your more active operational tables into memory while keeping other tables and historical data on disk and in some cases, this can be done in a way that’s transparent to your client applications.

In addition to integrating the In-Memory OLTP engine into the SQL Server engine, there were three other primary design goals:

  • Optimize data storage for main memory—Data in in-memory tables is not stored on on-disk pages nor does it mimic the on-disk storage structure when loaded into memory, eliminating the complex buffer pool structure and code that manages it. Indexes also are not persisted on disk and instead are recreated on startup when the memory resident tables are loaded into memory.
  • Eliminate latches and locks—All in-memory table and index structures are latch and lock free. Instead, SQL Server uses a new optimistic multiversion concurrency control mechanism to provide transaction consistency. The mechanism allows multiple sessions to work with the same data without locking/blocking and improves the stability of the system.
  • Compile requests to native code—Standard T-SQL is an interpreter-based language that provides flexibility, but at the cost of increased CPU overhead. The In-Memory OLTP engine avoids this overhead by compiling statements and stored procedures into native machine code.

The new lock-free optimistic multiversion concurrency control mechanism, in conjunction with algorithms that have been optimized for memory-resident data, is one of the key points that differentiates the In-Memory OLTP engine from just pinning tables in memory with DBCC PINTABLE or from putting databases on SSDs. DBCC PINTABLE keeps a table in memory in SQL Server’s buffer pool, but it still uses the same relational engine with locks and latches, so lock and latch contention can still occur, so it doesn’t offer the scalability found in the In-Memory OLTP engine. The same is true for SSDs, which can provide higher I/O but also still use the same relational engine.

In contrast, the In-Memory OLTP engine makes an entirely new version of that row in memory and timestamps it when a row in a shared buffer is modified. The engine then analyzes and validates any updated rows before committing them. Since there are no locks or other wait states, the processing is faster and more scalable than when the traditional locking mechanism is used. However, this optimistic processing creates a lot of different row versions, leaving a number of discarded rows in memory. To handle the discarded row versions, SQL Server runs a new lock-free garbage collection process as part of the In-Memory OLTP engine which periodically cleans up all the unneeded rows.

In addition to the new lock-free design, the In-Memory OLTP engine includes a stored procedure compilation process that compiles T-SQL code into native Win64 code which reduces the number of instructions that the CPU must execute to process the query. The combination of the new query processing engine and the compiled stored procedures are the primary factors driving the high-performance of the In-Memory OLTP engine.

Despite all the promising capabilities of in-memory optimization, there are currently a number of limitations on the technology. This first release of In-Memory OLTP supports only a subset of SQL Server data types and features. Moving some of your tables into in-memory tables may require some changes to your SQL code and table schema. The features supported by In-Memory OLTP and the current limitations will be discussed in more detail later in this chapter.

In-Memory OLTP Concepts and Terminology

The concepts and terminology used to describe the components involved with In-Memory OLTP throughout this chapter include:

  • Memory-optimized tables—Tables using the new data structures added as part of In-Memory OLTP. The primary store for memory-optimized tables is main memory, but a second copy in a different format is maintained on disk for durability purposes
  • Disk-based tables—Tables that use the data structures that SQL Server has always used, with pages of 8K that need to be read from and written to disk as a unit. Each table also has its own data and index pages.
  • Natively compiled stored procedures—The new object type supported by In-Memory OLTP that is compiled into native DLLs. Natively compiled stored procedures have the potential to increase performance even further than just using memory-optimized tables since there is no need for additional compilation and interpretation is reduced compared to standard interpreted Transact-SQL stored procedures. Natively compiled stored procedures can only reference memory-optimized tables.
  • Cross-container transactions—Transactions that reference both memory-optimized tables and disk-based tables.
  • Durable and nondurable tables—Memory-optimized tables by default are completely durable and offer full ACID support. Nondurable memory-optimized tables are supported by SQL Server but the contents of a nondurable table exist only in memory and are lost when the server restarts. The syntax DURABILITY=SCHEMA_ONLY is used to create nondurable tables.
  • Interop—This term refers to interpreted T-SQL statements that reference memory-optimized tables. Interop simplifies migration of your applications to In-Memory OLTP.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020