Home > Articles > Business & Management

The Big Data Big Bang

This chapter is from the book

The Four Key Benefits of Big Data

As we’ve said, Big Data and the digital economy is not a new topic; it’s been written about in the technical press since the phrase was first introduced in 1997. The three V’s—volume, velocity, and variety—widely used to describe the Big Data phenomenon were picked up and enhanced by Gartner as far back as 2001. But only recently has the Big Data discussion evoked the superlatives that we hear so often today. Consider, for example, what recent thought leaders have had to say about the subject.

The professional services group (PWC):

  • As its potential becomes more evident, Big Data will transform every aspect of the organization, from strategy and business model design to marketing, product development, HR, operations and more....9

GE’s Joe Salvo, manager of the Complex Systems Engineering Laboratory at GE Global Research, stated:

  • We are at an inflection point. The next wave of productivity will connect brilliant machines and people.10

McKinsey’s Global Institute estimates that:

  • A retailer using big data to the full could increase its operating margin by more than 60 percent.... In the developed economies of Europe, government administrators could save more than €100 billion ($149 billion) in operational efficiency improvements alone by using big data, not including using big data to reduce fraud and errors and boost the collection of tax revenues. And users of services enabled by personal-location data could capture $600 billion in consumer surplus.11

Will Big Data really transform every aspect of the organization, deliver $600 billion in consumer surplus by capitalizing on personal-location data, and provide a typical retailer a 60% increase in operating margins?

Really?

If so, we’re looking at something important here. But the first step is obviously to understand what, exactly, we are talking about when we use the term Big Data, because it’s obvious that not everyone is talking about the same thing when they use the phrase.

The standard definitions and descriptions of the Big Data phenomenon help to understand what Big Data is all about, but don’t really help much when it comes to understanding why all this is so important, and why it is beginning to reshape our global economy now. For that, we need to look at the issue not in terms of what Big Data is, but rather, what Big Data does. And Big Data does four things:

First, Big Data Provides Unique Insight

As we’ve seen, Big Data is all about analyzing huge data sets to understand things in new ways—by using powerful computers to analyze a wide variety of source data to reveal hidden correlations and patterns in that data. Essentially, the mantra is “let the numbers speak for themselves.” There is a lot of evidence—from epidemiologists, economists, and even political pollsters like Nate Silver—that demonstrates that for those who are able to tap into the potential for analyzing large data sets, the insights can be profound.

Take, for example, the hospital looking after premature babies that now can capture data in real-time on every breath and heartbeat of each of the babies being cared for. All that data can be analyzed to predict infections 24 hours before the baby shows any visible symptoms.12 Or consider the Centre for Therapeutic Target Validation (CTTV) being created by GlaxoSmithKline and other bioscience centers, which shares early-stage research work that combines huge amounts of data on the biological processes behind disease and allows a variety of companies and researchers to analyze the data to look at how genetics can affect disease progression.13 Similarly, the National Weather Service uses Raytheon software to collect what will soon be as much as 5.4TB of data from US and other nations’ weather satellites each day—capturing data for every meter of the globe every four hours. It is a staggering amount of data that then needs to be combined with local information around the globe on temperatures, wind speeds, and barometric pressure, all analyzed using sophisticated algorithms and processed for everything from forecasts to assessments of sea ice concentrations.14

Unfortunately, getting this level of insight from huge amounts of data is not for the uninitiated. Numbers might not lie, but they can mislead. The complex algorithms behind large data set analysis are not easy to create and interpret, and statistical and data modelling issues can seriously distort conclusions. As we will see, although larger data sets do allow for more sophisticated analysis, that level of sophisticated analytics still remains largely in the fields of research and science, where data are much easier to control and manage, and skilled data scientists are in place to direct hypothesis generation and testing.

Whether that same level of insight can be easily achieved by the average manufacturer or retailer is yet to be proven. Many organizations should probably accept a much more prosaic reality, which is that most of the benefits that they are seeking—a better understanding of supply-chain costs and profitability or a better grasp of their customers’ buying patterns—could be achieved if they simply use their current technologies more effectively and apply more rigorous data-management techniques to the huge volumes of structured transaction data that they already collect.

Still, whatever its limitations, the unique level of insight that comes from complex calculations of large data sets is at the heart of the Big Data, and when academics, epidemiologists, statisticians, or economists characterize the Big Data phenomenon, this insight is almost always what they are talking about.

Second, Big Data Underpins Digital Advertising and Customized Individual Marketing

That same principle—that new technologies can be used to extract insight from large, unstructured data sets—can also apply to the fields of marketing and sales. In fact, when most retailers, advertisers, marketers, or business press columnists describe Big Data, they are most likely not talking about the advanced predictability calculations used by Nate Silver, GlaxoSmithKline, or the Federal Reserve. They are most likely talking about how companies can use large data set analytics and new storage and retrieval technologies to anticipate broader sales trends or as a means of capturing their customers’ personal data and creating customized marketing or sales messages. The principle is the same, and the methods and tools are similar, but the focus is different. These Big Data advocates are hoping that by gathering and analyzing huge amounts of information on individual customers they will be able to better target their advertising campaigns to sell more products.

Applying Big Data analytics to customer data has taken the retail world by storm. Consider a recent comment by luxury goods maker Burberry’s CEO, Angela Ahrendts: “Consumer data will be the biggest differentiator in the next two to three years. Whoever unlocks the reams of data and uses them strategically will win.”15

It’s an attractive idea. After all, the reasons why groups like Amazon or Google or Facebook have retained such high levels of funding and high stock valuations is that they have a huge advantage when it comes to applying their sophisticated search technologies to the data on millions of users of their systems. Although users may see these platforms in terms of the services they provide—a search engine, e-mail, a news feed, an online store, or a method for sharing photos—the company executives and their financial backers have always seen them primarily as platforms for collecting data and selling digital advertising. It took the world some time to realize that as remarkable as e-commerce and online search is, in reality, for the hugely successful Internet tech companies like Google, Facebook, or Twitter, it was always about the customer data.

As John Sargent, the chief executive of Macmillan, recently admitted in a New Yorker article about meeting Jeff Bezos at Amazon in the mid-1990s, “I thought he was just a bookstore, stupid me. Books were going to be the way to get the names and the data. Books were his customer-acquisition strategy.”16

If that strategy was unique to Jeff Bezos then, it certainly isn’t any longer. As we will see, the move toward capturing individual customer data and applying predictive analytics is all part of a fundamental change overtaking the advertising world, where the emphasis is shifting toward digital advertising and particularly toward digital advertising for mobile devices. And as more and more advertising revenues shift from print to digital, and from PC and TV to mobile, greater pressure is being placed on advertisers to more accurately target and deliver their ads. There is nothing more frustrating than a badly placed, poorly composed, or worst of all, an irrelevant, advertisement on a mobile device. The advertising world understands that if digital advertising is going to work—and the major media conglomerates and Internet platform leaders are betting their companies’ futures that it will—then those advertising messages are going to have to be much better made and targeted. And the best way to do that, they contend, is to understand all they can about individual customers.

There are other benefits. Obvious bottom-line efficiencies come from targeted ads, and particularly digital ads, compared with general, mass print mailings or e-mails. Marketers want to live in a world where the right message for the right product can be delivered to the right person at the right price at the right time—delivered and tracked for success on the customer’s mobile device. That, they say, has to mean increased sales and significant savings to an organization’s bottom line. And surely, they add, it must be beneficial for the customers themselves.

It all seems to be cause for celebration among the Internet tech companies, mobile app developers, and advertisers. Whether it is good news for brand owners or retailers is yet to be proven. Despite what we’re hearing from pro-Big Data marketers, it is difficult to determine yet whether this type of customized advertising really does add to a retailer’s top line (that is, more revenues through expanded sales). As we’ll see, although it may be more efficient to distribute targeted electronic marketing messages, at this point few studies show that this type of personalized advertising actually prompts customers to buy more, or differently, than before.

Still, advertising has never been an exact science. As John Wanamaker, once famously said, “Half the money I spend on advertising is wasted; the trouble is I don’t know which half.” Advertisers and marketers are hoping that by collecting extensive amounts of personal data on each of us in the future they will be able to do better than half.

Third, Big Data Creates a Market for Harvesting and Selling Customer Data

Even if a company doesn’t advertise and sell directly to customers through retail, it can still profit from Big Data by harvesting and selling its customer data. In fact, an enormous market for personal data has appeared that offers all types of organizations a tantalizing opportunity to sell what they know about their customers to others.

This capturing and selling client data can be eye-wateringly profitable. Walgreens, for example, admitted to the SEC that it sold its customers’ prescription and prescribing physician data to big pharma buyers in 2012 for $749 million.17 That’s the kind of money that makes executives sit up and take notice, and in the last few years, most organizations have considered the possibility of capturing and selling their own customers’ data. That was reflected well in a recent survey by Spencer Stuart of 171 US-based marketing executives, which found that marketers have widely embraced the idea of Big Data and customer data mining (see Figure 1.3).

Figure 1.3

Figure 1.3 Hoping Big Data Will Improve Marketing, Sales and Customer Service

Data Source: SpencerStuart18

Still, this type of customer data mining can go very wrong. A spate of lawsuits were filed against Walgreens (as well as CVS pharmacies) by customers angry about the retailer’s breach of personal medical data. Target used to boast of how it had been collecting and analyzing customer data for nearly a decade. But despite its efforts to leverage that data to improve customer experience, few Target customers would profess a sea change in their Target shopping experience during that time. Mostly, Target customers were not pleased to find that their personal data—including Social Security and credit card numbers—had been vacuumed up by hackers in a data breach that compromised 40 million payment card accounts. Target’s CEO resigned, the company spent more than $60 million in dealing with the breach, and its Christmas revenue went down 5%.19, 20

It is early days, and certainly too soon to predict where customers’ attitudes toward their data and privacy will go. Many contend that given the myriad and virtually unregulated number of sources collecting and selling our personal data, we might as well simply accede to the inevitable and admit that privacy as we once knew it is dead. But many believe that a customer revolt over data privacy issues is going to be the “blowback” of these customer Big Data policies, and as data breaches continue, we may see, through litigation or boycott or support for alternative privacy-ensuring software, customers create their own revolution when it comes to the use of their personal data. (Privacy issues are discussed further in Chapter 10, “Doing Business in a Big Data World.”)

Fourth, Big Data Supports Supply Chain and Industrial Services Efficiencies

A fourth important application of Big Data returns to the theme of insight but has nothing to do with customer profiling. Purists from the “make and move” industries believe that too much of the Big Data discussion is focused on collecting consumer data and developing customized advertising for mobile phones. They contend that instead, the world should be celebrating the ability of Big Data and new mechatronic components to create a revolutionary level of efficiencies in product development, production, or delivery. Industrial leaders from companies like Siemens or GE are interpreting Big Data as something very different from the marketers and advertisers, the research scientists or the economists. They see Big Data as new technologies to collect and analyze mostly machine-to-machine digital data throughout the supply chain, the Industrial Internet, and the coming Internet of Things.

The real benefit of Big Data, they say, comes from new machine-based self-monitoring and reporting technologies now appearing throughout the global supply chain. As these sophisticated sensors and interconnected diagnostic networks eventually merge with the Internet of Things, they contend that they will result in huge efficiencies (see Figure 1.4).

Figure 1.4

Figure 1.4 The Origins of Big Data Projects

Data Source: IDC’s 2012 Vertical IT and Communications Survey

Unquestionably, a lot is happening in the realm that GE dubbed the Industrial Internet, and advocates are right to say that early returns show that Big Data projects focused on reducing costs (the bottom line) through increased efficiencies have so far been a lot more effective than Big Data collection focused on expanding revenues (the top line) through customer profiling and customized advertising. In fact, bolstered by improvements in artificial intelligence and machine learning, the Industrial Internet might prove to be the most revolutionary in its outcome, because it will almost certainly have a profound impact in the coming years on productivity, employment, and the continued polarization of the economy.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020