Home > Articles > Operating Systems, Server

This chapter is from the book

4.8 Process Groups and Sessions

Each process in the system is associated with a process group. The group of processes in a process group is sometimes referred to as a job and is manipulated as a single entity by processes such as the shell. Some signals (e.g., SIGINT) are delivered to all members of a process group, causing the group as a whole to suspend or resume execution, or to be interrupted or terminated.

Sessions were designed by the IEEE POSIX.1003.1 Working Group with the intent of fixing a long-standing security problem in UNIX—namely, that processes could modify the state of terminals that were trusted by another user’s processes. A session is a collection of process groups, and all members of a process group are members of the same session. In FreeBSD, when a user first logs onto the system, he is entered into a new session. Each session has a controlling process, which is normally the user’s login shell. All subsequent processes created by the user are part of process groups within this session, unless he explicitly creates a new session. Each session also has an associated login name, which is usually the user’s login name. This name can be changed by only the superuser.

Each session is associated with a terminal, known as its controlling terminal. Each controlling terminal has a process group associated with it. Normally, only processes that are in the terminal’s current process group read from or write to the terminal, allowing arbitration of a terminal between several different jobs. When the controlling process exits, access to the terminal is taken away from any remaining processes within the session.

Newly created processes are assigned process IDs distinct from all already-existing processes and process groups, and are placed in the same process group and session as their parent. Any process may set its process group equal to its process ID (thus creating a new process group) or to the value of any process group within its session. In addition, any process may create a new session, as long as it is not already a process-group leader.

Process Groups

A process group is a collection of related processes, such as a shell pipeline, all of which have been assigned the same process-group identifier. The process-group identifier is the same as the PID of the process group’s initial member; thus, process-group identifiers share the namespace of process identifiers. When a new process group is created, the kernel allocates a process-group structure to be associated with it. This process-group structure is entered into a process-group hash table so that it can be found quickly.

A process is always a member of a single process group. When it is created, each process is placed into the process group of its parent process. Programs such as shells create new process groups, usually placing related child processes into a group. A process can change its own process group or that of one of its child process by creating a new process group or by moving a process into an existing process group using the setpgid system call. For example, when a shell wants to set up a new pipeline, it wants to put the processes in the pipeline into a process group different from its own so that the pipeline can be controlled independently of the shell. The shell starts by creating the first process in the pipeline, which initially has the same process-group identifier as the shell. Before executing the target program, the first process does a setpgid to set its process-group identifier to the same value as its PID. This system call creates a new process group, with the child process as the process-group leader of the process group. As the shell starts each additional process for the pipeline, each child process uses setpgid to join the existing process group.

In our example of a shell creating a new pipeline, there is a race condition. As the additional processes in the pipeline are spawned by the shell, each is placed in the process group created by the first process in the pipeline. These conventions are enforced by the setpgid system call. It restricts the set of process-group identifiers to which a process may be set to either a value equal to its own PID or to a value of another process-group identifier in its session. Unfortunately, if a pipeline process other than the process-group leader is created before the process-group leader has completed its setpgid call, the setpgid call to join the process group will fail. As the setpgid call permits parents to set the process group of their children (within some limits imposed by security concerns), the shell can avoid this race by making the setpgid call to change the child’s process group both in the newly created child and in the parent shell. This algorithm guarantees that, no matter which process runs first, the process group will exist with the correct process-group leader. The shell can also avoid the race by using the vfork variant of the fork system call that forces the parent process to wait until the child process either has done an exec system call or has exited. In addition, if the initial members of the process group exit before all the pipeline members have joined the group—for example, if the process-group leader exits before the second process joins the group, the setpgid call could fail. The shell can avoid this race by ensuring that all child processes are placed into the process group without calling the wait system call, usually by blocking the SIGCHLD signal so that the shell will not be notified of a child exit until after all the children have been placed into the process group. As long as a process-group member exists, even as a zombie process, additional processes can join the process group.

There are additional restrictions on the setpgid system call. A process may join process groups only within its current session (discussed in the next section), and it cannot have done an exec system call. The latter restriction is intended to avoid unexpected behavior if a process is moved into a different process group after it has begun execution. Therefore, when a shell calls setpgid in both parent and child processes after a fork, the call made by the parent will fail if the child has already made an exec call. However, the child will already have joined the process group successfully, and the failure is innocuous.

Sessions

Just as a set of related processes are collected into a process group, a set of process groups are collected into a session. A session is a set of one or more process groups and may be associated with a terminal device. The main uses for sessions are to collect a user’s login shell and the jobs that it spawns and to create an isolated environment for a daemon process and its children. Any process that is not already a process-group leader may create a session using the setsid system call, becoming the session leader and the only member of the session. Creating a session also creates a new process group, where the process-group ID is the PID of the process creating the session, and the process is the process-group leader. By definition, all members of a process group are members of the same session.

A session may have an associated controlling terminal that is used by default for communicating with the user. Only the session leader may allocate a controlling terminal for the session, becoming a controlling process when it does so. A device can be the controlling terminal for only one session at a time. The terminal I/O system (described in Section 8.6) synchronizes access to a terminal by permitting only a single process group to be the foreground process group for a controlling terminal at any time. Some terminal operations are restricted to members of the session. A session can have at most one controlling terminal. When a session is created, the session leader is dissociated from its controlling terminal if it had one.

A login session is created by a program that prepares a terminal for a user to log into the system. That process normally executes a shell for the user, and thus the shell is created as the controlling process. An example of a typical login session is shown in Figure 4.7.

Figure 4.7

Figure 4.7 A session and its processes. In this example, process 3 is the initial member of the session—the session leader—and is referred to as the controlling process if it has a controlling terminal. It is contained in its own process group, 3. Process 3 has spawned two jobs: One is a pipeline composed of processes 4 and 5, grouped together in process group 4, and the other one is process 8, which is in its own process group, 8. No process-group leader can create a new session; thus, process 3, 4, or 8 could not start its own session, but process 5 would be allowed to do so.

The data structures used to support sessions and process groups in FreeBSD are shown in Figure 4.8. This figure parallels the process layout shown in Figure 4.7. The pg_members field of a process-group structure heads the list of member processes; these processes are linked together through the p_pglist list entry in the process structure. In addition, each process has a reference to its process-group structure in the p_pgrp field of the process structure. Each process-group structure has a pointer to its enclosing session. The session structure tracks per-login information, including the process that created and controls the session, the controlling terminal for the session, and the login name associated with the session. Two processes wanting to determine whether they are in the same session can traverse their p_pgrp pointers to find their process-group structures and then compare the pg_session pointers to see whether the latter are the same.

Figure 4.8

Figure 4.8 Process-group organization.

Job Control

Job control is a facility first provided by the C shell [Joy, 1994] and today is provided by most shells. It permits a user to control the operation of groups of processes termed jobs. The most important facilities provided by job control are the abilities to suspend and restart jobs and to do the multiplexing of access to the user’s terminal. Only one job at a time is given control of the terminal and is able to read from and write to the terminal. This facility provides some of the advantages of window systems, although job control is sufficiently different that it is often used in combination with window systems. Job control is implemented on top of the process group, session, and signal facilities.

Each job is a process group. Outside the kernel, a shell manipulates a job by sending signals to the job’s process group with the killpg system call, which delivers a signal to all the processes in a process group. Within the system, the two main users of process groups are the terminal handler (Section 8.6) and the interprocess-communication facilities (Chapter 12). Both facilities record process-group identifiers in private data structures and use them in delivering signals. The terminal handler, in addition, uses process groups to multiplex access to the controlling terminal.

For example, special characters typed at the keyboard of the terminal (e.g., control-C or control-\) result in a signal being sent to all processes in one job in the session; that job is in the foreground, whereas all other jobs in the session are in the background. A shell may change the foreground job by using the tcsetpgrp() function, implemented by the TIOCSPGRP ioctl on the controlling terminal. Background jobs will be sent the SIGTTIN signal if they attempt to read from the terminal, normally stopping the job. The SIGTTOU signal is sent to background jobs that attempt an ioctl system call that would alter the state of the terminal. The SIGTTOU signal is also sent if the TOSTOP option is set for the terminal, and an attempt is made to write to the terminal.

The foreground process group for a session is stored in the t_pgrp field of the session’s controlling terminal tty structure (see Section 8.6). All other process groups within the session are in the background. In Figure 4.8, the session leader has set the foreground process group for its controlling terminal to be its own process group. Thus, its two jobs are in the background, and the terminal input and output will be controlled by the session-leader shell. Job control is limited to processes contained within the same session and to the terminal associated with the session. Only the members of the session are permitted to reassign the controlling terminal among the process groups within the session.

If a controlling process exits, the system revokes further access to the controlling terminal and sends a SIGHUP signal to the foreground process group. If a process such as a job-control shell exits, each process group that it created will become an orphaned process group: a process group in which no member has a parent that is a member of the same session but of a different process group. Such a parent would normally be a job-control shell capable of resuming stopped child processes. The pg_jobc field in Figure 4.8 counts the number of processes within the process group that have the controlling process as a parent. When that count goes to zero, the process group is orphaned. If no action were taken by the system, any orphaned process groups that were stopped at the time that they became orphaned would be unlikely ever to resume. Historically, the system dealt harshly with such stopped processes: They were killed. In POSIX and FreeBSD, an orphaned process group is sent a hangup and a continue signal if any of its members are stopped when it becomes orphaned by the exit of a parent process. If processes choose to catch or ignore the hangup signal, they can continue running after becoming orphaned. The system keeps a count of processes in each process group that have a parent process in another process group of the same session. When a process exits, this count is adjusted for the process groups of all child processes. If the count reaches zero, the process group has become orphaned. Note that a process can be a member of an orphaned process group even if its original parent process is still alive. For example, if a shell starts a job as a single process A, that process then forks to create process B, and the parent shell exits; then process B is a member of an orphaned process group but is not an orphaned process.

To avoid stopping members of orphaned process groups if they try to read or write to their controlling terminal, the kernel does not send them SIGTTIN and SIGTTOU signals, and prevents them from stopping in response to those signals. Instead, their attempts to read or write to the terminal produce an error.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020