- Objectives
- Key Terms
- Introduction (3.0.1.1)
- VLAN Segmentation (3.1)
- VLANs in a Multiswitched Environment (3.1.2)
- VLAN Implementations (3.2)
- VLAN Trunks (3.2.2)
- Dynamic Trunking Protocol (3.2.3)
- Troubleshoot VLANs and Trunks (3.2.4)
- VLAN Security and Design (3.3)
- Design Best Practices for VLANs (3.3.2)
- Summary (3.4)
- Practice
- Class Activities
- Labs
- Packet Tracer Activities
- Check Your Understanding Questions
Introduction (3.0.1.1)
Network performance is a key factor in the productivity of an organization. One of the technologies used to improve network performance is the separation of large broadcast domains into smaller ones. By design, Layer 3 devices such as routers will block broadcast traffic at an interface. However, routers normally have a limited number of LAN interfaces. A router’s primary role is to move information between networks, not provide network access to end devices.
The role of providing access into a LAN is normally reserved for an access layer switch. A virtual local area network (VLAN) can be created on a Layer 2 switch to reduce the size of broadcast domains, similar to a Layer 3 device. VLANs are commonly incorporated into network design making it easier for a network to support the goals of an organization. While VLANs are primarily used within switched local area networks, modern implementations of VLANs allow them to span WLANs, MANs, and WANs.
This chapter will cover how to configure, manage, and troubleshoot VLANs and VLAN trunks. It will also examine security considerations and strategies relating to VLANs and trunks, and best practices for VLAN design.