Home > Articles > Programming

This chapter is from the book

Early Sequence of Numerical Knowledge

Probably soon after humans could speak they could also count, at least up to ten, by using their fingers. It is possible that Neanderthals or Cro-Magnons could count as early as 35,000 years ago, based on parallel incised scratches on both a wolf bone in Czechoslovakia from about 33,000 years ago and a baboon bone in Africa from about 35,000 years ago.

Whether the scratches recorded the passage of days, numbers of objects, or were just scratched as a way to pass time is not known. The wolf bone is the most interesting due to having 55 scratches grouped into sets of five. This raises the probability that the scratches were used to count either objects or time.

An even older mastodon tusk from about 50,000 years ago had 16 holes drilled into it, of unknown purpose. Because Neanderthals and Cro-Magnons overlapped from about 43,000 BCE to 30,000 BCE, these artifacts could have come from either group or from other contemporaneous groups that are now extinct.

It is interesting that the cranial capacity and brain sizes of both Neanderthals and Cro-Magnons appear to be slightly larger than modern homo sapiens, although modern frontal lobes are larger. Brain size does not translate directly into intelligence, but it does indicate that some form of abstract reasoning might have occurred very early. Cave paintings date back more than 40,000 years, so at least some form of abstraction did exist.

In addition to counting objects and possessions, it was also important to be able to keep at least approximate track of the passage of time. Probably the length of a year was known at least subjectively more than 10,000 years ago. With the arrival of agriculture, also about 10,000 years ago, knowing when to plant certain crops and when to harvest them would have aided in food production.

One of the first known settlements was Catal Huyuk in Turkey, dating from around 7,000 BCE. This village, constructed of mud bricks, probably held several hundred people. Archaeological findings indicate agriculture of wheat, barley, and peas. Meat came from cattle and wild animals.

Findings of arrowheads, mace heads, pottery, copper, and lead indicate that probably some forms of trading took place at Catul Huyuk. Trading is not easily accomplished without some method of keeping track of objects. There were also many images painted on walls and this may indicate artistic interests.

The probable early sequence of humans acquiring numerical knowledge may have started with several key topics:

  • Prehistoric numeric and mathematical knowledge:

    • Counting objects to record ownership
    • Understanding the two basic operations of addition and subtraction
    • Measuring angles, such as due east or west, to keep from getting lost
    • Counting the passage of time during a year to aid agriculture
    • Counting the passage of daily time to coordinate group actions
  • Numeric and mathematical knowledge from early civilizations:

    • Counting physical length, width, and height in order to build structures
    • Measuring weights and volumes for trade purposes
    • Measuring long distances such as those between cities
    • Measuring the heights of mountains and the position of the sun above the horizon
    • Understanding the mathematical operations of multiplication and division
  • Numeric and mathematical knowledge probably derived from priests or shamans:

    • Counting astronomical time such as eclipses and positions of stars
    • Measuring the speed or velocity of moving objects
    • Measuring curves, circles, and irregular shapes
    • Measuring rates of change such as acceleration
    • Measuring invisible phenomena such as the speed of sound and light
  • Numeric and mathematical knowledge developed by mathematicians:

    • Analyzing probabilities for games and gambling
    • Understanding abstract topics such as zero and negative numbers
    • Understanding complex topics such as compound interest
    • Understanding very complex topics such as infinity and uncertainty
    • Understanding abstract topics such as irrational numbers and quantum uncertainty

Prehistoric numeric and mathematical knowledge probably could have been handled with careful observation assisted by nothing more than tokens such as stones or scratches, plus sticks for measuring length. Addition and subtraction are clearly demonstrated by just adding or removing stones from a pile.

Numeric and mathematical knowledge from early civilizations would have needed a combination of abstract reasoning aided by physical devices. Obviously, some kind of balance scale is needed to measure weight. Some kind of angle calculator is needed to measure the heights of mountains. Some kind of recording method is needed to keep track of events, such as star positions over long time periods.

Numeric and mathematical knowledge probably derived from priests or shamans would need a combination of abstract reasoning; accurate time keeping; accurate physical measures; and awareness that mathematics could represent intangible topics that cannot be seen, touched, or measured directly. This probably required time devoted to intellectual studies rather than to farming or hunting.

Numeric and mathematical knowledge developed by mathematicians is perhaps among the main incentives leading to calculating devices and eventually to computers and software. This required sophisticated knowledge of the previous topics, combined with fairly accurate measurements and intellectual curiosity in minds that have a bent for mathematical reasoning. These probably originated with people who had been educated in mathematical concepts and were inventive enough to extend earlier mathematical concepts in new directions.

One of the earliest cities, Mohenjo-Daro, which was built in Northern India about 3,700 years ago, shows signs of sophisticated mathematics. In fact, balance scales and weights have been excavated from Mohenjo-Daro.

This city may have held a population of 35,000 at its peak. The streets are laid out in a careful grid pattern; bricks and construction showed signs of standard dimensions and reusable pieces. These things require measurements.

Both Mohenjo-Daro and another city in Northern India, Harappa, show signs of some kind of central authority because they are built in similar styles. Both cities produced large numbers of clay seals incised both with images of animals and with symbols thought to be writing, although these remain undeciphered. Some of these clay seals date as far back as 3,300 BCE.

Other ancient civilizations also developed counting, arithmetic, measures of length, and weights and scales. Egypt and Babylonia had arithmetic from before 2,000 BCE.

As cities became settled and larger, increased leisure time permitted occupations to begin that were not concerned with physical labor or hunting. These occupations did not depend on physical effort and no doubt included priests and shamans. With time freed from survival and food gathering, additional forms of mathematical understanding began to appear.

Keeping track of the positions of the stars over long periods, measuring longer distances such as property boundaries and distances between villages, and measuring the headings and distances traveled by boats required more complex forms of mathematics and also precise measurements of angles and time periods. The advent of boat building also required an increase in mathematical knowledge. Boat hulls are of necessity curved, so straight dimensional measurements were not enough.

Rowing or sailing a boat in fresh water or within sight of land can be done with little or no mathematical knowledge. But once boats began to venture onto the oceans, it became necessary to understand the positions of the stars to keep from getting lost.

Australia is remote from all other continents and was not connected by a land bridge to any other location since the continents broke up. Yet it was settled about 40,000 years ago, apparently by means of a long ocean voyage from one (or more) of the continents. The islands of Polynesia and Easter Island are also far from any mainland and yet were settled thousands of years ago. These things indicate early knowledge of star positions and some kind of math as well.

Many early civilizations in Egypt, Mesopotamia, China, India, and South America soon accumulated surprisingly sophisticated mathematical knowledge. This mathematical knowledge was often associated with specialists who received substantial training.

Many ancient civilizations, such as the ancient Chinese, Sumerians, Babylonians, Egyptians, and Greeks, invested substantial time and energy into providing training for children. Not so well known in the West are the similar efforts for training in India and among the people of Central and South America, such as the Olmecs, Mayans, Incans, and later the Aztecs.

Japan also had formal training. For the upper classes, Japanese training included both physical skills in weapons and also intellectual topics such as reading, writing, and mathematics. All of these ancient civilizations developed formal training for children and also methods of recording information.

The University of Nalanda in Northern India was founded circa 472 BC and lasted until about the 12th century, with a peak enrollment during around 500 AD. It was one of the largest in the ancient world, with more than 10,000 students from throughout Asia and more than 2,000 professors. It was among the first universities to provide training in mathematics, physics, medicine, astronomy, and foreign languages.

The University of Nalanda had an active group of translators who translated Sanskrit and Prakrit into a variety of other languages. In fact, much of the information about the University of Nalanda comes from Chinese translations preserved in China since the University of Nalanda library was destroyed during the Moslem invasion of India in the 12th century. It was reported to be so large that it burned for almost six weeks.

Indian scholars were quite advanced even when compared to Greece and Rome. Concepts such as zero and the awareness of numerous star systems were known in India prior to being known in Europe. (The Olmecs of Central America also used zero prior to the Greeks.)

In ancient times, out of a population of perhaps 1,000 people in a Neolithic village, probably more than 950 were illiterate or could only do basic counting of objects and handle simple dimensional measures. But at least a few people were able to learn more complex calculations, including those associated with astronomy, construction of buildings and bridges, navigation, and boat building.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020