Home > Articles > Engineering > Semiconductor Technologies

The Dark Silicon Problem and What it Means for CPU Designers

The so-called "dark silicon problem" is the subject of a lot of marketing and misinformation. David Chisnall looks at what it really means for CPU designers and how it's likely to affect future processors.
Like this article? We recommend

If you've been paying attention to ARM press releases over the last year, you'll have seen a lot of references to something ominously called the dark silicon problem. Given the amount of marketing terminology surrounding it, you might be forgiven for assuming that it's a marketing buzzword of some kind. But dark silicon is a real problem. In this article, we'll take a look at what the dark silicon problem means for CPU designers.

What's the Problem?

Once upon a time, transistors on an integrated circuit were a scarce resource. The 8086 had fewer than 30,000 transistors, which today seems a tiny number to implement a general-purpose processor, yet that was about three times the number in competing processors. CPU designers had to ensure that each one of these transistors was doing something useful, because adding another thousand transistors would significantly increase the cost of the part.

Today, CPUs and GPUs have transistor counts measured in the billions. Adding a few thousand transistors to make a particular task faster doesn't noticeably increase the cost, but a new problem has arisen: power usage, which is closely related to heat dissipation. For every watt of power the CPU consumes, it must dissipate a watt of heat.

Unfortunately, while the number of transistors that can be put on a chip cheaply has increased, the power consumption per transistor hasn't dropped at a corresponding rate. The amount of power per transistor has dropped, but more slowly than the size of the transistor has shrunk. Eventually, you hit some real physical limits; this problem isn't just theoretical. The first mainstream microprocessor to encounter this serious problem was the Pentium 4, a decade ago.

The heat generation per unit area of an integrated circuit passed the surface of a 100-watt light bulb in the mid 1990s, and now is somewhere between the inside of a nuclear reactor and the surface of a star. When something is generating that much heat, keeping it in the temperature range where silicon transistors work is quite difficult.

So you can put billions of transistors on a chip, but if you want to make a CPU rather than a barbecue, you can't use all of those transistors at the same time. This fact has made a big difference in how CPUs are designed, and the problem will only increase in the future. A processor that can use only 5% of its transistors at any given time will have very different characteristics from one that can use 50%.

Dedicated Coprocessors

One of the first changes has been the rise of dedicated coprocessors and specialized instructions. Floating-point units (FPUs) were the first example, but they were added for performance, not power efficiency. You can emulate floating-point arithmetic by using integer instructions—but taking 10–100 times as long. Adding a dedicated floating-point unit cost some transistors, so it wasn't until the 486 line that FPUs started becoming a standard component in Intel CPUs. With the 386, the choice was either to have an FPU or to use those transistors to make the rest of the pipeline faster. The correct decision was obvious—the option that made all code faster, not just the subset that was mainly floating-point arithmetic.

Now, however, the situation is reversed. The FPU is effectively free. The transistors it uses can't be used to make the rest of the pipeline faster, for two reasons. First, most of the tricks that can be used to improve throughput are already being used, and the rest quickly get into diminishing returns. Second is the dark silicon issue. Adding transistors to the main pipeline that you're going to use all the time means that you have to settle for a much lower clock rate if you want to keep the same power envelope. In contrast, the floating-point unit consumes very little power when you're not executing floating-point instructions; when you are, the FPU executes them a lot faster (and more power-efficiently) than if you were doing the same thing with the integer pipeline.

Floating-point coprocessors were the first example, and they were extended to become SIMD coprocessors. Modern CPUs go even further. For example, the ARMv8 architecture has a small number of instructions dedicated to performing AES encryption. The latest iteration of SSE has several instructions so obscure that few algorithms will ever use them.

These instructions are increasingly worth adding. Dedicated silicon is always more efficient than using general-purpose instructions to implement any given algorithm, so using them always saves power (and gives you a performance win). When they're not used, their cost is constantly dropping.

Instruction Decoders and Friends

So far, I've talked about transistors as if they're equivalent to arithmetic/logic units—the bits of the chip that actually do the calculations. On a modern chip, however, a lot of peripheral circuitry is required for the chip to be a general-purpose processor. The most obvious is the instruction decoder, which is near the start of the pipeline, and is responsible (in the loosest possible terms) for passing the inputs to each of the execution units.

Because if its place in the pipeline, the instruction decoder is among the small set of things that must draw power all the time. Every instruction must be decoded and dispatched. The complexity of the instruction decoder was one of the most significant driving forces behind the RISC movement. It's something of a tradeoff, because having a complex instruction decoder means that you can also have denser instruction encoding, which means in turn that you need less instruction cache for the same number of instructions. This is traditionally a win for x86, which has a variable-length instruction set, with instructions somewhere between 1 and 15 bytes. RISC architectures typically had a fixed 32-bit (4-byte) instruction set and a larger average instruction size.

ARM also has a variable-length instruction set called Thumb-2. In its much simpler encoding, every instruction is either 16 or 32 bits and is usually denser than x86 code. The decoder for ARM instructions is also a lot simpler. Modern Xeons are an exception to the rule that the decoder must be powered constantly, because in tight loops they cache the decoded micro-ops and don't use the main decoder. Unfortunately, the micro-ops are of similar decoding complexity to ARM or Thumb-2 instructions, so this is only a power saving relative to the cost of x86 decoding.

This is also a tradeoff when it comes to dedicated instructions for more obscure uses. The transistors used to implement them may no longer be a scarce resource, but short instruction encodings are. On x86, they can just use the longer encodings, but ARM offers a relatively small number of possible opcodes.

Heterogeneous Multicore

The typical solution to this issue is to have dedicated asynchronous coprocessors. The GPU is one example, and an ARM system on chip (SoC) typically has a small collection of others for image, video, and sound processing. They don't take up space in the instruction encodings because they appear as devices, and therefore are used by writing values to specific addresses. The downside of this approach is its relatively high overhead; it's only worth using for relatively long-running calculations, such as interpolation on an image or decoding a video frame. Fortunately, these applications tend to be the most interesting kinds of problems to offload to dedicated coprocessors.

If the coprocessors are on the same die as the main processor, they can be behind the same memory management unit as well and have a unified view of memory, making them cheap to invoke from userspace. In this case, the line between synchronous and asynchronous is slightly blurred. If you start a job running on a coprocessor but put the main CPU into a low-power state until it's finished, you have a synchronous operation, with some parts of the program being offloaded to the more efficient coprocessor. This is more or less how FPUs have worked since around the time of the DEC Alpha: an asynchronous pipeline, with very cheap operations to synchronize it with the rest of the chip.

You can think of ARM's big.LITTLE designs as being a very simple case of heterogeneous multicore. They typically have a small set of Cortex-A15 and Cortex-A7 cores that have identical instruction sets, but very different internal implementations. The A15 is a multiple-issue, superscalar, out-of-order chip. The A7 is in-order, and dual-issue in the best case. Therefore, although they can run the same programs, the A15 is a lot faster, whereas the A7 requires a lot less power.

The Future

Over the next decade, barring unexpected shifts in technology, CPU and SoC designers will have a lot of transistors to dedicate to infrequent use. These transistors will offer lots of potential, ranging from accelerating specific algorithms to providing Turing-complete processors optimized for different usage patterns. Modern GPUs and CPUs currently fall into this latter category. Both are capable of running any algorithm, but the CPU is heavily optimized for instruction-level parallelism and locality of reference, whereas the GPU is optimized for code with few branches and streaming accesses to memory.

As with any change in the hardware, this increase in capability will bring new challenges for compilers and operating systems. How do you schedule a process with different threads that not only run in parallel, but on entirely different core types? Do you always expose the parts on different cores as different threads, or do you allow a sequential task to move from one type of core to another? If the latter, how do you handle scheduling for a single "thread" that needs to move from a CPU to a DSP and back again over the course of a function? How do you expose this in a programming language?

Summary

The dark silicon problem, as with the increased focus on power consumption over the last decade, changes the set of constraints that CPU designers must take into account. Bringing a new processor to market takes 3–5 years, and the effect won't be noticeable for another couple of process generations, but it's something to think about for anyone who designs ICs. By the time they're entering production, it's likely to be a dominant factor limiting their performance.

InformIT Promotional Mailings & Special Offers

I would like to receive exclusive offers and hear about products from InformIT and its family of brands. I can unsubscribe at any time.

Overview


Pearson Education, Inc., 221 River Street, Hoboken, New Jersey 07030, (Pearson) presents this site to provide information about products and services that can be purchased through this site.

This privacy notice provides an overview of our commitment to privacy and describes how we collect, protect, use and share personal information collected through this site. Please note that other Pearson websites and online products and services have their own separate privacy policies.

Collection and Use of Information


To conduct business and deliver products and services, Pearson collects and uses personal information in several ways in connection with this site, including:

Questions and Inquiries

For inquiries and questions, we collect the inquiry or question, together with name, contact details (email address, phone number and mailing address) and any other additional information voluntarily submitted to us through a Contact Us form or an email. We use this information to address the inquiry and respond to the question.

Online Store

For orders and purchases placed through our online store on this site, we collect order details, name, institution name and address (if applicable), email address, phone number, shipping and billing addresses, credit/debit card information, shipping options and any instructions. We use this information to complete transactions, fulfill orders, communicate with individuals placing orders or visiting the online store, and for related purposes.

Surveys

Pearson may offer opportunities to provide feedback or participate in surveys, including surveys evaluating Pearson products, services or sites. Participation is voluntary. Pearson collects information requested in the survey questions and uses the information to evaluate, support, maintain and improve products, services or sites, develop new products and services, conduct educational research and for other purposes specified in the survey.

Contests and Drawings

Occasionally, we may sponsor a contest or drawing. Participation is optional. Pearson collects name, contact information and other information specified on the entry form for the contest or drawing to conduct the contest or drawing. Pearson may collect additional personal information from the winners of a contest or drawing in order to award the prize and for tax reporting purposes, as required by law.

Newsletters

If you have elected to receive email newsletters or promotional mailings and special offers but want to unsubscribe, simply email information@informit.com.

Service Announcements

On rare occasions it is necessary to send out a strictly service related announcement. For instance, if our service is temporarily suspended for maintenance we might send users an email. Generally, users may not opt-out of these communications, though they can deactivate their account information. However, these communications are not promotional in nature.

Customer Service

We communicate with users on a regular basis to provide requested services and in regard to issues relating to their account we reply via email or phone in accordance with the users' wishes when a user submits their information through our Contact Us form.

Other Collection and Use of Information


Application and System Logs

Pearson automatically collects log data to help ensure the delivery, availability and security of this site. Log data may include technical information about how a user or visitor connected to this site, such as browser type, type of computer/device, operating system, internet service provider and IP address. We use this information for support purposes and to monitor the health of the site, identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents and appropriately scale computing resources.

Web Analytics

Pearson may use third party web trend analytical services, including Google Analytics, to collect visitor information, such as IP addresses, browser types, referring pages, pages visited and time spent on a particular site. While these analytical services collect and report information on an anonymous basis, they may use cookies to gather web trend information. The information gathered may enable Pearson (but not the third party web trend services) to link information with application and system log data. Pearson uses this information for system administration and to identify problems, improve service, detect unauthorized access and fraudulent activity, prevent and respond to security incidents, appropriately scale computing resources and otherwise support and deliver this site and its services.

Cookies and Related Technologies

This site uses cookies and similar technologies to personalize content, measure traffic patterns, control security, track use and access of information on this site, and provide interest-based messages and advertising. Users can manage and block the use of cookies through their browser. Disabling or blocking certain cookies may limit the functionality of this site.

Do Not Track

This site currently does not respond to Do Not Track signals.

Security


Pearson uses appropriate physical, administrative and technical security measures to protect personal information from unauthorized access, use and disclosure.

Children


This site is not directed to children under the age of 13.

Marketing


Pearson may send or direct marketing communications to users, provided that

  • Pearson will not use personal information collected or processed as a K-12 school service provider for the purpose of directed or targeted advertising.
  • Such marketing is consistent with applicable law and Pearson's legal obligations.
  • Pearson will not knowingly direct or send marketing communications to an individual who has expressed a preference not to receive marketing.
  • Where required by applicable law, express or implied consent to marketing exists and has not been withdrawn.

Pearson may provide personal information to a third party service provider on a restricted basis to provide marketing solely on behalf of Pearson or an affiliate or customer for whom Pearson is a service provider. Marketing preferences may be changed at any time.

Correcting/Updating Personal Information


If a user's personally identifiable information changes (such as your postal address or email address), we provide a way to correct or update that user's personal data provided to us. This can be done on the Account page. If a user no longer desires our service and desires to delete his or her account, please contact us at customer-service@informit.com and we will process the deletion of a user's account.

Choice/Opt-out


Users can always make an informed choice as to whether they should proceed with certain services offered by InformIT. If you choose to remove yourself from our mailing list(s) simply visit the following page and uncheck any communication you no longer want to receive: www.informit.com/u.aspx.

Sale of Personal Information


Pearson does not rent or sell personal information in exchange for any payment of money.

While Pearson does not sell personal information, as defined in Nevada law, Nevada residents may email a request for no sale of their personal information to NevadaDesignatedRequest@pearson.com.

Supplemental Privacy Statement for California Residents


California residents should read our Supplemental privacy statement for California residents in conjunction with this Privacy Notice. The Supplemental privacy statement for California residents explains Pearson's commitment to comply with California law and applies to personal information of California residents collected in connection with this site and the Services.

Sharing and Disclosure


Pearson may disclose personal information, as follows:

  • As required by law.
  • With the consent of the individual (or their parent, if the individual is a minor)
  • In response to a subpoena, court order or legal process, to the extent permitted or required by law
  • To protect the security and safety of individuals, data, assets and systems, consistent with applicable law
  • In connection the sale, joint venture or other transfer of some or all of its company or assets, subject to the provisions of this Privacy Notice
  • To investigate or address actual or suspected fraud or other illegal activities
  • To exercise its legal rights, including enforcement of the Terms of Use for this site or another contract
  • To affiliated Pearson companies and other companies and organizations who perform work for Pearson and are obligated to protect the privacy of personal information consistent with this Privacy Notice
  • To a school, organization, company or government agency, where Pearson collects or processes the personal information in a school setting or on behalf of such organization, company or government agency.

Links


This web site contains links to other sites. Please be aware that we are not responsible for the privacy practices of such other sites. We encourage our users to be aware when they leave our site and to read the privacy statements of each and every web site that collects Personal Information. This privacy statement applies solely to information collected by this web site.

Requests and Contact


Please contact us about this Privacy Notice or if you have any requests or questions relating to the privacy of your personal information.

Changes to this Privacy Notice


We may revise this Privacy Notice through an updated posting. We will identify the effective date of the revision in the posting. Often, updates are made to provide greater clarity or to comply with changes in regulatory requirements. If the updates involve material changes to the collection, protection, use or disclosure of Personal Information, Pearson will provide notice of the change through a conspicuous notice on this site or other appropriate way. Continued use of the site after the effective date of a posted revision evidences acceptance. Please contact us if you have questions or concerns about the Privacy Notice or any objection to any revisions.

Last Update: November 17, 2020